Tamper Proofing Web
Applications at Runtime

©2008 Gotham Digital Science, LLC

dm, Presentation Outline

= What is Tamper Proofing?
= Real-World Tamper Proofing Mechanisms
= OWASP Top 10 Coverage
= Tamper Proofing Method Analysis
— URLS & Query Strings
— Form Data

— Cookies
— JavaScript

©2008 Gotham Digital Science, LLC E.D I l I/ \
L]

@ Traditional Security Strategies

= Negative Security (BlackList)
— Bypass
— False Positives / Negatives

= Positive Security (WhiteList)

— Difficult to Generate
— Still might have false positives

= Cant stop Authorization Attacks
— Need context

©2008 Gotham Digital Science, LLC E.D I l I/ \
L]

A

' Tampering Attacks

= Goal: Prevent attacks targeting Embedded Input
— Editable Data (Text, TextArea, Password)
— Embedded Input (almost everything else)

= What are Embedded Inputs?
— URLs (URI and Query String)
— Cookies
— HTML Form Inputs EXCEPT editable inputs
— On average, >80% of all Inputs

©2008 Gotham Digital Science, LLC E.D I l I/ \
L]

Tamper Prevention

= Root Cause Analysis:

— Problem: The application allowed the user to do
something they shouldn't have been able to do

— Solution: Only allow the user do what the
application expects them to be able to do

= How?
— Look at what is presented to the user
— If an option is not presented, don't let them use it
— If we don't ask the user for it, don't accept it!

©2008 Gotham Digital Science, LLC E.D I l I/ \
L]

Requirements

= Transparent to the application / developer
— Web Server Module (ISAPI,NSAPI,MOD_*)
— HttpModule (ASP.NET / 1IS7)
— Web Filters (Java)

= Tolerable performance hit
— There will always be some

= Configurable
— There is no silver bullet

©2008 Gotham Digital Science, LLC E.D I l I/ \
L]

Tamper Proofing Strategies

= Encryption
— Prevents un-authorized viewing and tampering
— Requires a secret key

= Abstraction
— Prevents un-authorized viewing and tampering
— Requires a storage location (client or server-side)

= Hashing (HMAC)

— Prevents tampering
— Requires a secret key or storage location

©2008 Gotham Digital Science, LLC E.D I l I/ \
L]

Tamper Proofing Strategies

= Define entry points
— /default.aspx
— /login.aspx

= Analyze entry point responses
— URLs & Query Strings
— HTML Form Inputs
— HTTP Cookies
— JavaScript Functions & Variables

©2008 Gotham Digital Science, LLC E.D I l I/ \
L]

Tamper Proofing Output

= Any effective mechanism must have two
basic components
— Input Validation & Transformation (easy)
e Usually a Filter

e May leverage framework for parsing
o *Relatively* simple structure / format

©2008 Gotham Digital Science, LLC E.D I l I/ \
L]

Tamper Proofing Output

= Any effective mechanism must have two
basic components

— Output Transformation (hard)

e Filter / Parser
— HTML Forgiveness
— JavaScript Complexity

e Framework Tag / Control Extensions
— Inconsistent Tag Use

©2008 Gotham Digital Science, LLC E.D I l I/ \
L]

A

» Tamper Proofing Mechanisms

= Real World Tamper Proofing Mechanisms

— Commercial Application Firewalls
e Might offer some of the discussed protection
mechanisms
— Freeware
e All are embedded mechanisms (software-only)
e Deployable at the web server OR application level

e May be applicable to only a specific application
framework

©2008 Gotham Digital Science, LLC E.D I l I/ \
L]

D Http Data Integrity Validator

= Http Data Integrity Validator (HDIV)
— Java Web Filter & Custom TagLibs

— Generates _HDIV_STATE_ token for each request

e Server-side Reference to State Information
e Client-side (encrypted /hashed)

— Abstracts embedded QueryString and Form Data
e Confidentiality

— Editable Data Protection
e Provides generic validators (configurable) for editable inputs

©2008 Gotham Digital Science, LLC E.D I l I/ \
L]

D Http Data Integrity Validator

= Http Data Integrity Validator (HDIV)

— Works with Struts 1.x, Struts 2.x, Spring MVC and
JSTL (overrides framework HTML tags at runtime)

e Does not parse HTML output, so data not rendered using a
framework tag is not protected (JavaScript)

— Version: 2.0.4 - Mar 11, 2008 (hdiv.org)

©2008 Gotham Digital Science, LLC E.D I l I/ \
L]

@™ 11S Secure Parameter Filter (SPF)

= JIS Secure Parameter Filter (SPF)
— ASP.NET HttpModule (C#)

— Appends URLToken to every URL
e Validates URI and any embedded Query String values

— Encrypts Embedded Form Data and Cookies

— Inserts a Form ID to capture state of each form
e Only “enabled” inputs will be permitted
e Only encrypted embedded inputs are accepted
o Verifies Read-Only text attributes on form submission

— Configurable JavaScript protection

©2008 Gotham Digital Science, LLC E.D I l I/ \
L]

@™ 11S Secure Parameter Filter (SPF)

= JIS Secure Parameter Filter (SPF)

— Parses Response HTML (not tied to Framework)
e Uses HTML Agility Pack to parse HTML responses
e Non-ASP.NET application can also be protected on IIS7

— Optional "BlackList” RegEx protection capability

— Future Enhancements

e Input Abstraction
e AJAX Support
e ASP.NET Control Override

— Version: 1.0.1 — Dec 1, 2008 (gdssecurity.com)

©2008 Gotham Digital Science, LLC E.D I l I/ \
L]

Mod Anti-Tamper

= Mod Anti-Tamper
— Apache Module (written in C)

— Parses outbound web server responses (Regex) for
embedded links

— Appends encrypted token (HMAC) to embedded query
strings and cookie values
e Does not cover FORM data

— Rumors of integration into mod_security
— Version 0.1 - 2005 (wisec.it)

©2008 Gotham Digital Science, LLC E.D I l I/ \
L]

@™ 5\WASP Top 10 Coverage

Al - Cross Site Scripting (XSS)
e URL tokens should thwart reflected XSS exploits
(if tied to a session cookie)

A2 - Injection Flaws
A3 - Malicious File Execution
A4 - Insecure Direct Object Reference

A5 - Cross Site Request Forgery (CSRF)

e URL tokens should provide added benefit of CSRF protection
(if tied to a session cookie)

©2008 Gotham Digital Science, LLC EID I l I/ \
L]

@™ OWASP Top 10 Coverage

A6 - Information Leakage and Improper Error Handling

e Encryption might mitigate information leakage within
application inputs (hidden fields, cookies, etc)

A7 - Broken Authentication and Session Management
e Cookie protection will mitigate weak/predictable session IDs

A8 - Insecure Cryptographic Storage
A9 - Insecure Communications

A10 - Failure to Restrict URL Access
e URL tokens should thwart forced browsing

©2008 Gotham Digital Science, LLC EID I l I/ \
L]

@ Tamper Proofing Considerations

= Tamper Proofing Considerations
— URIs
— Form Data
— Cookies
— JavaScript

©2008 Gotham Digital Science, LLC E.D I l I/ \
L]

Tamper Proofing URIs

= URIs

— Every URI that is not an entry point is generated by
the application
e A HREF
e FORM ACTION
e SCRIPT/IMG SRC

— Not normally considered "“input”

©2008 Gotham Digital Science, LLC E.D I l I/ \
L]

@ Tamper Proofing URIs

= Encrypt the URI

— Decrypt and replace URI on every request
http:/ /foo.test/UserProfile.aspx

2
http://foo.test/5a47670634430784a6db394.aspx

» URL Tokens
— Token is an HMAC of URL or Server-Side Reference

— Validate token on every request

http://foo.test/UserProfile.aspx
v

http:/ /foo.test/UserProfile.aspx?token=5a476b394d535a7063443

©2008 Gotham Digital Science, LLC EID I l I/ \
L]

Tamper Proofing URIs

» Other Considerations

— URL Length Limitations
e Vary by Browser & Web Server

— If authenticated, must be tied to the user / session
— Can't be tied to user/session if link-able

— Token must be tied to URI

— Token must NOT be alterable by user

©2008 Gotham Digital Science, LLC E.D I l I/ \
L]

Tamper Proofing Query Strings

= Query Strings
— Embedded query strings within HTML URLs
e A HREF, FORM ACTION, SCRIPT/IMG SRC

— FORMS using GET method will also generate query
string data
o We will address FORM inputs separately

©2008 Gotham Digital Science, LLC E.D I l I/ \
L]

#® Tamper Proofing Query Strings

= Encrypted Query String

— Decrypt on each request
http://foo.test/UserProfile.aspx?id=392

7
http://foo.test/UserProfile.aspx?qs=394d535a7063443078

= Query String Token
— HMAC or Server-Side Reference
— Can be combined with URI to cover entire URL

— Validated on every request
http://foo.test/UserProfile.aspx?id=392

v
http:/ /foo.test/UserProfile.aspx?id=392&token=394d535a706344

©2008 Gotham Digital Science, LLC EID I l I/ \
L]

% Tamper Proofing Query Strings

= Query String Abstraction
— Requires a storage location for data (protected)

— Re-populate real values on each request (key lookup)
http:/ /foo.test/UserProfile.aspx?id=392

7
http://foo.test/UserProfile.aspx?id=0&key=0-1-526189

= Other Considerations
— Same as with URIs (see previous list)
— URI and QueryString “token” can be the same
— Query String Values should not be interchangeable

©2008 Gotham Digital Science, LLC E.D I l I/ \
L]

@ Tamper Proofing FORM Data

= HTML Form Data

— Embedded HTML FORM data
e TYPE=HIDDEN | RADIO | CHECKBOX, SELECT
e Read-Only Text Boxes

— Forms can use either GET or POST

©2008 Gotham Digital Science, LLC E.D I l I/ \
L]

i Tamper Proofing FORM Data

= Encrypt Embedded Inputs

— Decrypt parameters on each request
<INPUT TYPE="hidden” NAME="acct” VALUE="149">

2
<INPUT TYPE="hidden” NAME="acct” VALUE="4d535a7067">

= Hashing or Abstraction
— Can use Hashing or Lookup Table

— Requires a storage location
e Server-side list (with a unique lookup key)
e Client-side via hidden field (must be tamper proof)

©2008 Gotham Digital Science, LLC E.D I l I/ \
L]

) Tamper Proofing FORM Data

= Example HTML Form (Original)

<form method="post" action="/UserPreferences.aspx">

<select name=%“"Color”>

<option value=“RD”>Red</option>

<option value=“GR”>Green</option>

<option value=“BL”>Blue</option>

</select>

<input type="radio" name=“theme” value=“T323” />Classic

<input type="radio" name=“theme” wvalue=“T301” />Modern

<input type="radio" name=“theme” value=“"T100” />Text-Only

<input type="submit" value="Submit" />
</form>

©2008 Gotham Digital Science, LLC E.D I l I/ \
L]

) Tamper Proofing FORM Data

= Example HTML Form (Abstracted)

<form method="post" action="/UserPreferences.aspx">
<input type=“hidden” name=“formId” value=“0-2-526189" />

<select name=%“Color”>

<option value=“0">Red</option>

<option value=“1">Green</option>

<option value=“2">Blue</option>
</select>

<input
<input
<input
<input
</form>

type="radio" name=%“theme” value=%“0"
type="radio" name=%“theme” value=“1"
type="radio" name=%“theme” value=%“2"

type="submit" wvalue="Submit" />

©2008 Gotham Digital Science, LLC

/>Classic

/>Modern

/>Text-0Only

GOTHAM

@ Tamper Proofing FORM Data

» Other Considerations

— Inputs cannot be tied to session for 3rd party Forms
e Same as a linkable URL

— Storage location must be protected
o Key-based lookup (server-side)
e Encryptred or HMAC (client-side)

— Interchanging Protected Inputs
e Form ID should be tied to Action URI
e Tie input value to NAME & ACTION

— Javascript (covered later)

©2008 Gotham Digital Science, LLC E.D I l I/ \
L]

@ Tamper Proofing FORM Data

= Disabled or Read-Only Form Inputs
= Disabled inputs DO NOT submit, so should be ignored

= Read-Only inputs should be treated as embedded but
are still rendered within the UI
= Cannot be visibly altered
= Must verify integrity

= Input NAMES must be tracked on each form
= INPUT TYPE=IMG Example
= Avoid altering due to client-side references

©2008 Gotham Digital Science, LLC E.D I l I/ \
L]

5 Tamper Proofing Cookies

= Encrypting Cookies

— Decrypt cookies on each request
Set-Cookie: user-id=123;
\’
Set-Cookie: user-id=4d535a7067;

= Hashing or Abstraction
— Can use Hashing or Lookup Table

— Requires a storage location
o Server-side list (with a unique lookup key)
e Client-side (must be tamper proof)

©2008 Gotham Digital Science, LLC E.D I l I/ \
L]

@ Tamper Proofing JavaScript

= JavaScript used to perform request-related tasks
— Populate data (URLs and Inputs)

= Too complex to parse for tamper proofing

= Common constructs for request related tasks:
— Function Calls
— Variable / Property Assignments

©2008 Gotham Digital Science, LLC E.D I l I/ \
L]

Tamper Proofing JavaScript

= Protecting Function Calls
— Define the function name and arguments
— Determine which need to be protected
— Determine the data type of each
e URL or FORM INPUT
= Protecting Variables or Properties

— Several common properties that are URLs
e |ocation.href, window.location

— Custom variables require name and data type to be
specified

©2008 Gotham Digital Science, LLC E.D I l I/ \
L]

ul Tamper Proofing JavaScript

» Protected Function Call:

__doPostBack('ctl00$CustomerHeader$btnSearch',")
v
__doPostBack('4d535a706738b1ca827e90fc284ba628c3ef231','27e90fc284ba")

» Caveats:

— Limitations since the target form may not be
accessible
e Abstraction may not be possible
e Input value may not be tie-able to the target URI

— Likely to require manual configuration

©2008 Gotham Digital Science, LLC E.D I l I/ \
L]

™ conclusion

= Tamper proofing allows us to only worry
about what we ask the user for

= Real world solutions do exist and work
= As long as tested, either works or doesn't

Questions?

©2008 Gotham Digital Science, LLC E.D I l I/ \
L]

