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The control of centroidal momentum has recently emerged as an important component of

whole-body humanoid control, resulting in emergent upper-body motions and increased ro-

bustness to pushes when included in whole-body frameworks. Previous work has developed

specialized computational algorithms for the centroidal momentum matrix (CMM) and its
derivative, which relate rates of change in centroidal momentum to joint rates and accelerations

of the humanoid. This paper instead shows that specialized algorithms are in fact not always

required. Since the dynamics of the centroidal momentum are embedded in the joint-space

dynamic equations of motion, the CMM and terms involving its derivative can be computed
from the joint-space mass matrix and Coriolis terms. This new approach presents improvements

in terms of its generality, compactness, and e±ciency in comparison to previous specialized

algorithms. The new computation method is then applied to perform whole-body control of a
dynamic kicking motion, where the mass matrix and Coriolis terms are already required by the

controller. This example motivates how centroidal momentum can be used as an aggregate de-

scriptor of motion in order to ease whole-bodymotion authoring from a task-space perspective. It

further demonstrates emergent upper-body motion from centroidal angular momentum (CAM)
control that is shown to provide desirable regulation of the net yaw moment under the foot.

Finally, a few perspectives are provided on the use of centroidal momentum control.

Keywords: Centroidal momentum; whole-body control; rigid-body dynamics.

1. Introduction

This paper derives new computationally-simple relationships between the struc-

tural components of the joint-space dynamic equations of motion for a humanoid

and those of its centroidal momentum dynamics. The centroidal momentum1,2 of a
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rigid-body system consists of its net linear momentum as well as its net angular

momentum about its center of mass (CoM). While the linear momentum has a

well-known relationship with the velocity of the CoM, the centroidal angular

momentum (CAM) has recently emerged as an important quantity within human

and humanoid balance control.3–7 Whole-body control strategies that employ

centroidal momentum control can result in unauthored upper-body motions to

maintain balance1,4,6,7 and have been found to be more robust to disturbances

than when inverse-dynamics-based control is applied.8 Application of centroidal

momentum planning has also been shown to simplify whole-body trajectory op-

timization,9 by enabling collocation approaches to trade whole-body dynamics

constraints within their formulation for signi¯cantly simpler ones on the evolution

of centroidal momentum.

Although the net angular momentum of a system can be expressed about any

point, angular momentum particularly about the CoM has been shown to be a

privileged quantity in biomechanics studies of human walking.3 Herr and Popovic3

showed that their subjects had large non-zero angular momenta for individual

bodies in their limbs, yet, the subjects' neuro-control systems coordinated signi¯cant

inter-segmental momentum cancelations, regulating their CAM to near zero. This

coordination strategy in human subjects has led roboticists to pursue its applica-

bility as well. Originally, CAM was applied to automatically coordinate upper-body

motions with the lower body by Kajita et al.10 through resolved momentum control.

Since then, CAM control has seen increasing applications for standing balance

control on level,4,11 uneven,7 and non-stationary terrain.5 While many locomotion

control laws focus on point-mass simple models, other more sophisticated methods

have begun to address angular momentum contributions for walking pattern gen-

eration12,13 and have approximated these contributions for online applications.14

Centroidal momentum control more speci¯cally has also begun to be applied in

locomotion,6,15–17 and in the generation of rotational movements18,19 for animated

avatars.

Recently, Orin et al.1,2 detailed the structure and properties of the centroidal

momentum for a humanoid. They introduced the centroidal momentum matrix

(CMM), which maps the generalized velocities of a humanoid to its centroidal mo-

mentum. A specialized computational algorithm for the CMM was originally pre-

sented, while others have introduced methods to compute the derivative of the

CMM.4,6 The net momentum of a rigid-body system has been studied from theo-

retical perspectives by others as well. Ostrowski and Burdick20 studied the evolution

of the net system momentum in the context of geometric mechanics. They showed

how nonholonomic constraints which arise in wheeled vehicles can be exploited to

shape otherwise conserved portions of the net system momentum. Wieber21 later

demonstrated the presence of the net Newton and Euler equations within the joint-

space equations of motion for °oating-base humanoid systems. While the develop-

ment of Ostrowski and Burdick was largely coordinate free, Wieber's development

used body-¯xed coordinate systems for each rigid-body in the humanoid, and made a
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portion of their observations much clearer for this class of systems. Featherstone22

later showed how the net system momentum is included in the generalized mo-

mentum of a °oating-base system.

With these insights, it is clear that the dynamics of the centroidal momentum

(both linear and angular) are necessarily embedded in the whole-body dynamics of a

humanoid. The usefulness of this observation to those working on centroidal mo-

mentum control, however, has eluded previous work in this area. As a main con-

tribution of this paper, the work herein describes a general, compact, and e±cient

method to compute the CMM and a centroidal momentum bias force from knowledge

of the joint-space mass matrix and Coriolis force respectively. The method is general

in that it is compatible for application with any method that computes the structural

components of the joint-space dynamic equations through Lagrangian, Kane's, or

recursive Newton–Euler approaches alike. Our new methods to compute the CMM

and its bias force are compact and e±cient, providing simpler implementation and

decreasing the computational overhead for the application of centroidal momentum

control within a whole-body control framework. By providing these new connections

to existing equations and algorithms in joint space, which many roboticists have

access to, it is anticipated that the barrier to entry for centroidal momentum control

will be decreased.

To motivate the use of this new computation strategy, we demonstrate the in-

tegration of centroidal momentum control within a whole-body control approach for

a dynamic kicking motion. The application of centroidal momentum control is shown

to provide emergent arm action and results in desirable properties on the ground

reaction forces in comparison to when no CAM control is applied. The role of task

prioritization in this application is ¯nally described to assist future applications of

whole-body momentum control.

The remainder of the paper is organized as follows. Section 2 provides a brief

overview of centroidal momentum before the new computationally-simple relation-

ships between the centroidal dynamics and the joint-space dynamic equations of

motion are introduced in Sec. 3. Section 4 demonstrates the example of centroidal

momentum control within a whole-body framework for a dynamic kicking motion,

expanding upon our previous work.7 Section 5 concludes with a summary.

2. Background

The centroidal momentum of a rigid-body system is a net momentum of all its

bodies.1,2 To review the background on centroidal momentum, standard notation23 is

adopted, including spatial (6D vector) notation. Spatial notation is used for com-

pactness of presentation, while all results can be derived using conventional 3D

vector notation. Given a °oating-base humanoid system, its bodies are numbered 1

to NB , with Body 1 selected to be the °oating-base as shown in Fig. 1. The system is

assumed to have n internal degrees of freedom (DoF) in addition to the 6-DoF

°oating-base joint.
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The spatial momentum of Body i in this system, denoted hi 2 R6, is comprised of

its linear momentum li 2 R3 and its angular momentum ki 2 R3 about a local co-

ordinate origin.a The momentum of a body is related to its spatial velocity vi 2 R6

through

hi ¼
ki

li

" #
¼ I ivi; ð1Þ

¼ I i

!i

vi

� �
; ð2Þ

where I i 2 R6�6 is a spatial inertia for Body i and takes the form

I i ¼
�I i miSðciÞ

miSðciÞT mi1

" #
: ð3Þ

Here ci 2 R3 is the vector to the CoM for Body i, mi its mass, and �I i 2 R3�3 its

standard Cartesian inertia tensor. SðpÞ provides the skew symmetric cross product

matrix such that SðpÞ! ¼ p � !.

2.1. Centroidal momentum

The centroidal momentum of the system can be formed by adding up all the indi-

vidual body momenta in the system. A coordinate frame G is placed at the CoM as

shown in Fig. 1 to provide a common frame for all the body momenta. The centroidal

aAs a standard practice, it is assumed that all quantities for Body i are given with respect to its local

coordinate frame. A preceding superscript is used to indicate otherwise. For example, 0p1 gives the position

of Body 1 in Body 0 (ICS) coordinates. See work by Featerstone and Orin23 for further detail.

1
G

0

Fig. 1. Coordinate system de¯nitions. The inertial coordinate system (ICS) 0 is earth ¯xed. The °oating-

base coordinate system 1 is rigidly attached to the torso in this example. The center of gravity (G)
coordinate system is attached to the CoG with orientation parallel to the ICS.
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momentum can then be formed as

hG ¼
XNB

i¼1

iX T
Ghi; ð4Þ

where the matrix iX T
G 2 R6�6 provides a spatial momentum transformation from

Body i to the CoM frame. These transformations account for the di®erent orienta-

tions of each link as well as their positional o®sets from the CoM (G)

iX T
G ¼

GRi
GRiSð ipGÞT

0 GRi

" #
: ð5Þ

By selecting the orientation of Frame G to be parallel to the ICS, the rotation matrix
GRi 2 SOð3Þ is equal to 0Ri 2 SOð3Þ.

2.2. Centroidal momentum matrix

The CMM AG 2 R6�ðnþ6Þ of a °oating-base system1 linearly relates its generalized

velocities q
: 2 Rnþ6 to its centroidal momentum hG

hG ¼ AGðqÞq:: ð6Þ
As is customary in robot dynamics, the generalized velocity is assumed to be com-

posed of the individual joint velocities q
:
i

q
: ¼ ½q: T1 � � � q: TNB

�T ; ð7Þ
where q

:
1 2 R6 in particular provides a generalized velocity for the °oating-base body

through a relationship of the form23,24

v1 ¼ ©1ðq1Þq:1: ð8Þ
The joint matrix ©ðq1Þ 2 R6�6 can be de¯ned to accommodate Euler angle rates or

other representations of angular velocity within q
:
1.
23 As an example, q

:
1 could consist

of the angular and linear velocity of the °oating-base body in the ICS

q
:
1 ¼ ½0!T

1
0vT

1 �T , which provides ©1 through

v1 ¼ !1

v1

� �
¼ 1R0 0

0 1R0

h i
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

©1

0!1

0p
:
1

� �
: ð9Þ

Through its proper use, ©1 is °exible to describe any selection of generalized velocity

for the °oating-base. However, most commonly for roboticists, the transformation

©1 is block diagonal as above, with the upper-left block accounting for the repre-

sentation of angular velocity, and the lower-right block optionally providing a co-

ordinate change for the linear velocity. This generality represents an improvement

over previous methods for the centroidal dynamics that were presented assuming a

single convention for the °oating-base kinematics. It is important to note that a
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choice of q
:
1 to include !1 and v1 directly is also valid, which would provide ©1 as the

identity matrix.

Although (6) can be very useful on its own, the second-order Centroidal

Dynamics are often required for dynamic whole-body controllers. Di®erentiation

of (6) provides

h
:

G ¼ AGq
::þA

:
Gq
:
: ð10Þ

These centroidal dynamics are linked to the external forces on the system, as

Newton's and Euler's laws require that h
:

G be equal to the net external wrench fG
(force and moment about G) on the humanoid

fG ¼ h
:

G ¼ AGq
::þA

:
Gq
:
: ð11Þ

fG is usually comprised of the gravity force along with any ground reaction forces

expressed at G.

Previous authors have developed special algorithms to compute the structural

components of the centroidal dynamics. Orin et al.1 provide an e±cient OðnÞ algo-
rithm specialized to compute AG , while Oðn 2Þ methods to compute A

:
G are given by

Macchietto et al.4 and in the errata to the paper by de Lasa et al.6 Finite di®erence

methods to compute A
:
G provide an alternative method for computation which is

OðnÞ but more susceptible to ¯nite precision numeric issues. Regardless of how they

are computed, obtaining AG and A
:
Gq
:
to describe h

:

G through (11) is the important

¯rst step towards selecting joint accelerations that provide angular momentum

regulation in many centroidal momentum controllers.

3. Centroidal Dynamics Within the Joint-Space Equations of Motion

The specialized computational algorithms developed previously have enabled initial

applications of centroidal momentum control. However, this section shows that no

specialized algorithms are generally necessary. Instead, the mass matrix H and the

Coriolis term Cq
:
from the joint-space dynamic equations of motion can be used to

compute the centroidal dynamics quantities AG and A
:
Gq
:
. This new computational

approach has improved compactness and e±ciency in comparison to previous

methods, and thus has great potential to simplify future applications of centroidal

momentum control where these structural components of the joint-space dynamic

equations of motion are readily available.

To make the connection between these quantities, consider the joint-space dy-

namic equations of motion in a fully-actuated form but with no other external forces

(no ground reaction forces)

HðqÞq::þCðq; q:Þq: þGðqÞ ¼ ¿ : ð12Þ
H 2 Rðnþ6Þ�ðnþ6Þ, Cq

: 2 Rnþ6, G 2 Rnþ6, and ¿ 2 Rnþ6 are the familiar mass

matrix, velocity product term, gravitational term, and generalized force vector

respectively.23 Computation of the mass matrix H is required for any dynamic

P. M. Wensing & D. E. Orin
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whole-body control strategy and can be computed with the composite-rigid-body

algorithm (CRBA), while C q
:
, G, or their sum can be computed through recursive-

Newton–Euler (RNEA) inverse dynamics approaches. Other symbolic techniques

based on Lagrangian or Kane's methods are equally valid to compute the compo-

nents of (12) for the purposes considered here. This generality represents an im-

provement over previous algorithms which have relied on particular conventions for

the representation of the system dynamics.

The dynamic equations (12) can be partitioned into their °oating-base and ac-

tuated components

H 11 H 1�
H �1 H ��

� �
q
::
1

q
::
�

� �
þ C1 q

: þG1

C� q
: þG�

� �
¼ ¿1

¿�

� �
; ð13Þ

where ¿1 2 R6, ¿� 2 Rn, and associated de¯nitions follow similarly. Although the

°oating-base is assumed actuated in this development, an unactuated °oating-base

would provide ¿1 ¼ 0.

Given the joint matrix ©1 provided by the °oating-base kinematics, virtual work

dictates that the generalized force ¿1 is related to the wrench on the °oating-base

f 1 2 R6 through24

©T
1 f 1 ¼ ¿ 1: ð14Þ

3.1. Extraction of the centroidal dynamics

Let us assume for the purposes of development, that the °oating-base remains ac-

tuated and consider the dynamic equations in the absence of gravity ðG ¼ 0Þ. Under

this assumption, the force on the actuated °oating-base represents the only external

force on the system. De¯ning U 1 ¼ ½16�6 06�n�, it follows that

U 1ðHq
::þCq

:Þ ¼ ¿1 ¼ ©T
1 f 1: ð15Þ

Further de¯ning ª1 ¼ ©�1
1 , the net external wrench in Frame 1 is

ªT
1 U 1ðHq

::þCq
:Þ ¼ f1: ð16Þ

The spatial transform 1X T
G can be used to instead examine the net external wrench

in Frame G, fG , which is equal to h
:

G through (11)

fG ¼ iX T
G f1; ð17Þ

¼ iX T
G ªT

1 U 1ðHq
::þCq

:Þ; ð18Þ
¼ AG q

::þ A
:
G q

:
: ð19Þ

Since this relationship must be true for any choice of q
::
, it follows that the CMM and

the centroidal momentum bias force can be constructed from components of the

dynamic equations of motion.
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AG = 1XT
G ΨT

1 U1 H

ȦG q̇ = 1XT
G ΨT

1 U1 C q̇

(20)

(21)

That is, the CMM AG and bias A
:
G q

:
can be computed from the mass matrix H

and the Coriolis term C q
:
through a set of kinematic transformations. Given that

many applications of whole-body control require the computation of the mass matrix

H and Coriolis term C q
:
, this represents little additional overhead in order to obtain

AG and A
:
G q

:
for the centroidal dynamics.

In order to compute (20) and (21), the spatial transformation 1X T
G can be con-

structed by extracting the position of the CoM 1pG from H . First, note that

the composite-rigid-body inertia (locked inertia) of the system I C
1 can be found

within H 11
23

H 11 ¼ ©T
1 I

C
1 © 1: ð22Þ

This composite inertia has a well de¯ned structure,23 which allows the CoM position
1pG to be extracted

I C
1 ¼ ªT

1 H 11ª 1 ð23Þ

¼
�I
C
1 M Sð1pGÞ

M Sð1pGÞT M 1

" #
; ð24Þ

where M is the total mass of the system.

Table 1 summarizes the procedure that can be used to compute AG and A
:
G q

:

from knowledge of the °oating-base kinematics, system mass matrix H , and Coriolis

term C q
:
alone. Given these inputs, this short set of computations can be pro-

grammed in under 10 lines of code, and provides an OðnÞ computation of the CMM

and an Oð1Þ computation of the centroidal bias term. This compactness and e±-

ciency represent improvements over previous specialized algorithms for the

Table 1. Computation summary.

Inputs: Joint-Space Dynamics Descriptors: HðqÞ; Cðq; q:Þ q:; U 1

Floating-Base Kinematics: 0R1ðq1Þ; ª1ðq1Þ
Outputs: Centroidal Dynamics Descriptors: AG ; A

:
G q

:

Computations:

H 11 ¼ U 1 H U T
1

I C
1 ¼ ªT

1 H 11ª1

M ¼ ðI C
1 Þ6;6

1pG ¼ 1
M ½ðI C

1 Þ3;5 ðI C
1 Þ1;6 ðI C

1 Þ2;4�T

iX T
G ¼

0R1
0R1 Sð1pGÞT

0 0R1

� �
AG ¼ iX T

G ªT
1 U 1 H

A
:
G q

: ¼ iX T
G ªT

1 U 1 C q
:

P. M. Wensing & D. E. Orin
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centroidal dynamics. Note that, often, an e®ective choice for rigid-body simulation is

to employ a selection of q
:
1 ¼ v1 which gives©1 ¼ 16�6. This choice further simpli¯es

many aspects of the computation as

I C
1 ¼ H 11; ð25Þ

AG ¼ iX T
G U 1 H ; and ð26Þ

A
:
G q

: ¼ iX T
G U 1 C q

:
: ð27Þ

4. Application to a Dynamic Kicking Motion

This section describes the application of centroidal momentum control to a dynamic

kicking motion. The CMM AG and associated bias force A
:
G q

:
are used in whole-

body control and are computed directly from the mass matrix H and Coriolis term

Cq
:
in the joint-space dynamic equations of motion. Since the latter quantities are

required in our whole-body controller, this results in more e±cient computation for

the CMM and bias force. Biomechanics studies suggest that the regulation of CAM

may provide a target quantity to guide coordination between the upper-body and

lower body.3 This section demonstrates how CAM can be applied as a coordination

target for humanoid robots, and discusses important considerations for its inclusion

in whole-body control frameworks.

The kicking motion studied here is used to expand upon the role that centroidal

momentum control plays within our previously introduced whole-body control

framework.7 This framework consists of a state machine coupled with a prioritized

task-space controller. The state machine is used to sequence the system through the

various phases of motion, as shown in Fig. 2. Prioritized task-space control (PTSC) is

then applied to coordinate the many actuators of the humanoid and accomplish

tracking of important features of the movement such as foot motion, CoM position,

and CAM. We refer the reader to previous work7 for full details, and focus attention

to describe the centroidal momentum control aspects here.

Fig. 2. Dynamic kicking motion and the four states of a ¯nite state machine that compose its evolution.

In the control approach, all state transitions are based on time.

Improved Computation of the Humanoid Centroidal Dynamics for Whole-Body Control
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4.1. Centroidal momentum commands

Rates of change in centroidal momentum are prescribed during each state of the

motion to regulate the CoM position and CAM. For linear momentum, a com-

manded l
:
G;c is formed from PD control on the desired CoM:

l
:
G;c ¼ M ½0p::G;d þKD;‘ð0p: G;d � 0p

:
GÞ þKP;‘ð0pG;d � 0pGÞ�: ð28Þ

The desired CoM trajectory for 0pG is prescribed based on a set of simple third-order

B�ezier curves. The commanded rate of change in angular momentum takes a simpler

form:

k
:
G;c ¼ k

:
G;d þKD;kðkG;d � kGÞ: ð29Þ

The desired CAM trajectory kG;d can be selected heuristically to encode a desired

whole-body rotation about a given axis. During all states except the Kick state, kG;d

is set to zero. During the Kick state, this setpoint is formed based on the desired

dynamics of the kicking leg. The foot trajectory itself is speci¯ed through trajectories

on a virtual leg length r and angle �.

The desired evolution of the virtual leg angle � is then used to specify a desired

CAM as follows. Throughout the example, the inertial z-axis is opposite gravity and

the y-axis is perpendicular to the sagittal plane. To encode a whole-body rotation

about the y-axis, the system's net moment of inertia about the y-axis Iyy is recorded

at the beginning of the kick. This can be found from the mass matrix, by ¯rst

computing the composite-rigid-body inertia of the system IG about the CoM

IG ¼ iX T
Gª

T
1 H 11ª 1

1XG ; ð30Þ

¼
�I G 0

0 M 1

" #
; ð31Þ

and then selecting the desired component of the cartesian inertia

Iyy ¼ ð�I GÞð2;2Þ: ð32Þ
The desired CAM and its rate are then selected as:

kG;d ¼ ½0; �Iyy�
:
d ; 0�T ;

k
:
G;d ¼ ½0; �Iyy �

::
d ; 0�T :

By employing a non-zero angular momentum setpoint for the pitch, this selection

encodes a desired whole-body pitch rotation. During the kicking motion, the kicking

leg produces a large amount of pitch angular momentum. Thus, if � is close to zero,

tracking kG;d � 0 requires upper-body motions to produce pitch momentum opposite

that of the kicking leg. When � is a large positive value, tracking kG;d requires upper-

body motions to contribute additional pitch angular momentum of the same sign as

the kicking leg. Nominally, we employ � ¼ 0:8 to encode that we desire 80% of the

system inertia to be producing pitch angular momentum in sync with the kicking leg.

P. M. Wensing & D. E. Orin
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This proportion approximately represents the percentage of the system inertia in the

upper-body and kicking leg combined. The role of � will be explored further in

Sec. 4.3. Although very simple, the use of this desired angular momentum trajectory

will be shown to be an e®ective strategy to encode whole-body motion.

4.2. Centroidal momentum within task-space control

Given the commanded rate of change in centroidal momentum, TSC is applied to

realize this command in the humanoid. Although there are other approaches to

include centroidal momentum control within whole-body frameworks,5,25 the wide

use of TSC and its general applicability motivates its adoption in this example. TSC

seeks to ¯nd whole-body joint torques which minimize the deviation from some

commanded task acceleration v
:
t;c. Examining (11), the CMM provides a Jacobian-

like relationship, similar to that between joint rates and a traditional task-space (or

operational-space) velocity. As a result, the inclusion of a commanded rate of change

in centroidal momentum ¯ts cleanly within this framework.

In order to address limitations on ground reaction forces, the TSC problem

is formulated as a constrained optimization problem. This optimization problem

can be formulated over dynamic variables of torques ¿ , q
::
, and ground reaction forces

f s, where the consistency of these variables with the system dynamics must be

enforced.

min
q
::
;¿ ;f sij

1

2
jjJ t q

::þ J
:
t q
: � v

:
t;cjj2 þ

1

2
jjAG q

::þ A
:
G q

: � h
:

G;cjj2; ð33Þ

subject to H q
::þC q

: þG ¼ S T
a ¿ þ

XNS

i¼1

XNPi

j¼1

J T
sij f sij ; ð34Þ

f sij 2 Ci 8 i 2 f1; . . . ;NSg; j 2 f1; . . . ;NPi
g: ð35Þ

Here J t is a task Jacobian, Sa ¼ ½0n�6 1n�n� is the actuated joint selector, J sij is a

Jacobian for contact vertex j of foot i,26 and Ci is a friction cone for foot i. NS

provides the number of feet in support, and NPi
is the number of contact vertices for

foot i. J t may be a Jacobian for a set of tasks and may include, for instance, foot and

pose Jacobians within its rows. In essence, the optimization problem is formulated for

the humanoid to track the desired task dynamics as closely as possible while satis-

fying constraints on its interactions with the ground through contact.

Similarly structured frameworks, some under the names of task-space inverse

dynamics, have demonstrated the capacity of this optimization-based whole-body

control approach to address joint torque limits,7 joint angle limits,27 and self-colli-

sion28 as well. In practice, variables for torque ¿ or acceleration q
::
can be removed

from these formulations to accelerate their performance.7,8 In this work, q
::
is removed

by expressing q
::
as a function of ¿ and f sij through (34). The formulation is solved

with the conic interior-point solver of MOSEK,29 and performs at rates of 250Hz

which are su±cient for real-time simulation.

Improved Computation of the Humanoid Centroidal Dynamics for Whole-Body Control
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Often, a strict hierarchy of importance exists amongst the tasks. When this is the

case, the TSC problem is instead a PTSC problem.7 For instance, in the kicking

example, the foot accelerations are set as the highest priority, while the CoM ac-

celeration is the second highest. In the null space of these tasks, the CAM and

pose are regulated. For comparison later in the text, we describe this prioritization

using the \>" operator, with the prioritization used here denoted as ðfeetÞ >
ðCoM Þ > ðCAM and poseÞ. Within each priority level, task Jacobians and com-

mands are multiplied by weighting factors to specify relative importance when a

strict preference is not desired. To solve a PTSC problem, the above optimization

problem may be solved multiple times in a cascaded fashion, ¯rst for the highest

priority task. Then, subsequent solves for lower-priority tasks can be carried out with

additional constraints to preserve the tracking optimality of the previous levels.

Further details on the exact implementation of this hierarchical approach can be

found in our previous publication.7 Other more sophisticated techniques that embed

the hierarchy into a single optimization problem have also been proposed and shown

computational bene¯ts.30

4.3. Results

This whole-body control approach was applied in simulation to a small humanoid

model. The model, shown in Fig. 2, has 26 DoF and a mass distribution modeled after

a 50th percentile male.31 Total mass and height are M ¼ 19:12 kg and h ¼ 1:05m.

The task-space weights and gains for this system are shown in Table 2.b Simulation is

carried out with the DynaMechs32 simulation package, which employs a penalty-

based spring-damper model of contact. Contact for each foot with the ground is

bNote that the task-space gains e®ectively encode desired time constants for the task-space error dy-

namics. As a result, for scaled versions (in mass or size) of the same system, these values require no

retuning. However, task weightings do require modi¯cation since linear and angular momentum scale as
Mh andMh2, respectively, while kinematic tasks scale only with h. Thus, to achieve comparable results on

scaled versions of the same system with new mass ~M and height ~h , linear and angular momentum weights

can be scaled by Mh= ~M ~h and Mh2= ~M ~h
2
, and kinematic task weights by h=~h .

Table 2. Weight and gain settings for the PTSC. Where omitted, all

derivative gains are set for critical damping. All kinematic tasks employ a

command of the form €xc ¼ €xd þKPðxd � xÞ þKDð _xd � _xÞ.
Task Weight KP (s�2) Priority

Linear momentum (CoM) 200 30 2

Angular momentum 100 KD ¼ 25 s�1 3

Torso orientation (100, 100, 25) 120 3

Hip 1 40 3

Knee 0.1 120 3

Ankle 0.1 120 3
Shoulder 10 220 3

Elbow 10 240 3

Foot position and orientation 1 50 1

P. M. Wensing & D. E. Orin
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modeled through four point contacts considered at the support vertices on the

bottom of the foot. Static and kinetic friction coe±cients of �s ¼ 0:95 and �k ¼ 0:6

are used in the majority of the simulation experiments. Optimized joint torques ¿

from (33) are computed at a control loop rate of 250Hz and are applied directly to

the humanoid joints for simulation.

Computation times for the centroidal quantitiesAG andA
:
G q

:
with this model are

provided in Table 3. Computation times for the mass matrix H and the Coriolis bias

forceC q
:
are also shown for comparison. WhenH andC q

:
are required elsewhere for

whole-body control, this table shows signi¯cant computational bene¯ts when ap-

plying the new computations for the CMM and its bias term using the simple al-

gorithm summarized in Table 1. For the CMM computation, both the original

specialized CMM algorithm by Orin et al.1 and the computation of AG in Table 1

require OðnÞ operations. The relatively more involved computations in each recur-

sive step of the original CMM algorithm enables our new computation here to be

executed in a sixth of the time despite having the same computational order. To

compute the CMM bias, the new computations proposed in Table 1 enjoy both

improved order and computation time in comparison to the fastest previous method

to compute A
:
G q

:
. In fact, even when C q

:
has yet to be computed, the method to

compute A
:
G q

:
in Table 1 is faster than an inexact ¯nite-di®erence method.

To demonstrate the e®ects of controlling the CAM, the whole-body task-space

approach was ¯rst applied with CAM control turned o®, providing a prioritization

order of ðfeetÞ > ðCoM Þ > ðposeÞ. The pose task was applied with a desired torso

orientation and desired joint angles for a relaxed standing posture. The kick motion

was applied with a soccer ball modeled as an in¯nitely thin spherical shell with mass

0:12 kg and radius 7 cm (roughly, a FIFA standard soccer ball normalized to the mass

and height of the humanoid). Contact forces were modeled between the foot and the

ball using an elastic model of contact. No knowledge of the contact forces was pro-

vided to the task-space controller, and thus this interaction represented a distur-

bance to the system. Snapshots from the resultant motion are shown in Fig. 2, with a

video provided in the supplementary material available at

https://www.go.osu.edu/WensingOrin-IJHR WBC SI.

While the behavior maintains balance with the CAM control turned o®, it dis-

plays a lack of upper-body motion due to the tasks employed.

Table 3. Timing for computation of centroidal

momentum quantities.

Quantity Algorithm Order Time (�s)

H CRBA23
Oðn 2Þ 75:8

Cq
:

RNEA23 OðnÞ 26:8

AG CMM recursive1 OðnÞ 63:2

Table 1 OðnÞ 10:5

A
:
G q

: Finite di®erence OðnÞ 63:9

Table 1 Oð1Þ 0:8

Improved Computation of the Humanoid Centroidal Dynamics for Whole-Body Control
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This simple example was repeated, with CAM control enabled at the lowest

priority level, providing a prioritization of ðfeetÞ > ðCoM Þ > ðCAM and poseÞ.
Figure 3 shows the whole-body motion that results. Simply through the prescription

of a commanded CAM, the humanoid displays rich upper-body motion.

The parameter �, which controls the magnitude of the pitch angular momentum

in relation to the kick leg speed, provides further capability to shape the upper-body

motion. Figure 4 and the supplementary video show the resultant upper-body mo-

tion as � is varied. In the case when � ¼ 0:8, the upper-body performs motions that

produce pitch angular momentum in addition to that of the kick leg, resulting in a

coordinated and balanced whole-body rotation. Figure 4 shows that the left arm has

more emergent movement than the right for � ¼ 0:8. This motion is coordinated by

the controller to cancel the yaw momentum created by the kicking leg. Figure 5

shows the yaw CAM composition during the kicking state of the motion. The yaw

angular momentum contribution from the upper-body cancels out a large portion of

Time (s)
2.5 3 3.5 4

P
it

ch
A

ng
le

(r
ad

)

-1.5

-1

-0.5

0

0.5

1
Right Arm

Time (s)
2.5 3 3.5 4

-1.5

-1

-0.5

0

0.5

1
Left Arm

Time (s)
2.5 3 3.5 4

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5
Torso γ = 0.0

γ = 0.2
γ = 0.4
γ = 0.6
γ = 0.8

Fig. 4. Variation in the pitch angle evolution during the kicking state with changes in �. Pitch angles are
given about the lateral axis which points away from the left side of the body. The period of contact with the

ball around t ¼ 3:1 s is shaded in each plot. Further details on the contributions of these movements to

pitch and yaw momentum are provided in Fig. 6.

Fig. 3. Snapshots of the dynamic kicking motion when CAM control is turned on. In comparison to the

previous example, the system displays emergent upper-body motions through a simple selection of desired
angular momentum setpoints.
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the yaw angular momentum contribution of the legs, canceling 67% during the most

dynamic part of the kick.

Similar yaw momentum cancelations are observed when � ¼ 0:0 is employed by

the controller. Figure 6 highlights that these yaw momentum cancelations occur

across di®erent selections of �. Note that when � ¼ 0:0, the upper-body acts to

partially cancel pitch angular momentum created from the kick as shown in Fig. 6. In

order to accomplish this, the arms instead swing opposite the kicking leg right before

impact. To simultaneously regulate yaw however, the right arm must move more

dynamically than the left, as shown in Fig. 4 and in contrast to when � ¼ 0:8. These

intersegmental yaw momentum cancelations emerge automatically without needing
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Fig. 5. Centroidal yaw angular momentum and composition during the Kick state of the dynamic kicking

motion for � ¼ 0:8. The upper-body motions provide a partial cancelation of the angular momentum
contributions of the legs. The rapid change in yaw momentum during the middle of the kick is due to

contact interaction with the ball, which exerts a net negative yaw angular impulse on the system.

γ
0 0.2 0.4 0.6 0.8Y

aw
A

ng
ul

a r
M

om
en

tu
m

( N
·m

· s
)

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5 Legs
Upper Body

γ
0 0.2 0.4 0.6 0.8P

i t
ch

A
ng

ul
ar

M
om

en
tu

m
(N

·m
·s

)

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

Fig. 6. Angular momentum contributions from the upper-body and legs as � is varied. Angular mo-

mentum is measured at t ¼ 3:0 s, which is approximately 100ms prior to swing leg contact with the ball.
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to retune any other controller parameters. When no CAM control is applied, how-

ever, the total yaw angular momentum is not well regulated and matches that of the

legs, as shown in Fig. 7.

These yaw momentum cancelations are desirable features for the whole-body

controller. The momentum cancelations due to the upper-body motions decrease the

net yaw momentum, and also decrease the net yaw moment about the CoM. This net

yaw moment about the CoM is closely linked to the yaw moment under the stance

foot. De¯ning nG 2 R3 as the net moment about the CoM, nG is related to the net

force f 2 R3 and ground normal (yaw) moment nz 2 R about the center of pressure

(CoP) as

k
:
G ¼ nG ¼

0

0
nz

2
4

3
5þ ðpCoP � pGÞ � f ; ð36Þ

where pCoP 2 R3 is the position of the CoP under the foot. In motions with small

CoM accelerations, f � ½0; 0;Mg�T , and thus the force itself does not create a large

yaw moment about the CoM. In this case, the rate of change in centroidal yaw

momentum is approximately equal to the normal (yaw) moment under the foot

(about the CoP).

When no CAM control is applied for the kick, the rapid accelerations of the swing

leg lead to rapid changes in centroidal yaw momentum. In this case, the average yaw

moment under the foot is 0:9391Nm with a maximum of 2:801Nm. However, when

CAM control is applied, the upper-body motions partially cancel the yaw momentum

of the legs, leading in turn to smaller rates of change in net yaw momentum. Thus,

when CAM control is applied, the yaw moment under the foot is decreased to

0:5447Nm with a maximum of 1:981Nm at mid-kick.
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Fig. 7. Centroidal yaw angular momentum and composition during the Kick state of the dynamic kicking

motion without CAM control.
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These yaw moments under the foot are created by tangential forces distributed

underneath the foot that, in ensemble, create moments. Thus, this reduction in yaw

moment through CAM control has the desirable e®ect of reducing the frictional

requirement of the kick. This e®ect causes the system to be more robust to errors in

the assumed contact model by providing increased margin to remain within the

friction cones in comparison to when no CAM control is applied. This margin also

has potential bene¯t to the case of contact disturbances, when disturbances may

temporarily shift the system into a regime of kinetic (reduced) friction. While only

studied for standing balance here, the regulation of yaw momentum has also proved

to be of utility in dynamic locomotion.17

The supplemental video to this paper illustrates this bene¯t further, in the case of

limited friction. The friction coe±cients for simulation are limited to half of their

nominal value (�s ¼ 0:475, �k ¼ 0:3), while the controller continues to assume that

the environment has the original friction values (�s ¼ 0:95, �k ¼ 0:6). The case of no

CAM control results in signi¯cant foot slip. However, when CAM control is used, its

lower frictional requirements make it robust to this change in the environment. The

results for this lower environmental friction have no perceptible di®erences with the

original results when CAM control is used.

The role of upper-body motion in regulating the yaw moment has been noted in

human biomechanics33 and humanoid gait planning34,35 work as well. Park33 showed

how arm swing during walking can result by limiting the allowable yaw moment

under the foot. Ugurlu et al.34 showed how a rigid torso can be employed to com-

pensate for the required yaw moment from the legs. The CAM control approach here

coordinates all of the arm DoFs to accomplish a similar aim without having to

constrain the yaw moment explicitly.

4.4. Implementation of centroidal angular momentum control

CAM control is an emerging approach, with a growing number of application

examples available in the literature. Fewer, though, are its applications to very

dynamic movements. While the new relationships with the joint-space equations of

motion, developed here, simplify application of centroidal momentum control,

careful CAM control integration is still important for the whole-body control system

to perform as desired. The selection of proper setpoints as well as prioritization are

particularly important details. In the previous sections and in our previous work, we

have presented design decisions for CAM control which have provided dynamic

whole-body movements. Drawing on our experience applying CAM control for bal-

ance and locomotion, this section provides further discussion on the consequences of

alternate design decisions which can often lead to surprising results.

Previous work has utilized kG;d ¼ 0 in their implementations of CAM control.11,36

While this setpoint works well for standing balance, faster movements, such as the

kick considered here may require a more dynamic desired angular momentum. The

e®ect of employing kG;d ¼ 0 is shown in Fig. 8, and results in pitching motions in
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the torso opposite to that of the swing leg in order to cancel its pitch angular

momentum e®ects. In motions, such as running,17 which include signi¯cant swing-leg

dynamics, this undesired torso pitching can be an even larger issue if the pitch CAM

task weighting is selected too high or an appropriate setpoint is not prescribed.

Other whole-body control strategies have explicitly prioritized the CAM control

task over other objectives in a whole-body control system.11 But to what extent

should the CAM be prioritized in a TSC framework? From our experiments with

CAM in whole-body control we have developed a few rules of thumb. In the PTSC

framework, placing the CAM control task at a priority above the CoM can unnec-

essarily constrain the achievable dynamics of the humanoid, and e®ectively enforces

a nonholonomic virtual constraint on the system. Also, in the examples shown

here, regardless of the CAM setpoint, a prioritization order of ðfeetÞ > ðCAM Þ >
ðCoM Þ > ðposeÞ led to rapid upper-body instability.

A modi¯ed prioritization order of ðfeetÞ > ðCAM and CoM Þ > ðposeÞ intuitively
seems most reasonable, as the CAM and CoM dynamics together de¯ne the net

external forces. The results of this strategy, however, show the importance of regu-

larizing the CAM task by a desired pose. Figure 9 and the video supplement show the

e®ects of this prioritization. Although small CAM control errors would typically

allow the system to return to a nominal upper-body posture at the end of the motion,

explicit CAM prioritization over pose undesirably restricts the system in this case.

Due to the nonholonomic character of the centroidal momentum, there is no desired

\average system orientation" included in the CAM control law Eq. (29), and thus

CAM control bene¯ts from regularization by the pose task when placed at the same

priority level. These observations discourage the strict prioritization of CAM control

in prioritized whole-body control frameworks.c

The prioritization scheme for the centroidal linear momentum, in contrast, has

much less e®ect on the system performance. While the prioritization order ðfeetÞ >
ðCoM Þ > ðCAM and poseÞ was employed in the main results of this paper, the

Fig. 8. Dynamic kicking motion when kG;d ¼ 0. The CAM weight in the task-space controller was
doubled to emphasize its e®ect for this case. Here, the torso pitches backwards at the beginning of the kick

to cancel the change in angular momentum from the backward movement of the swing leg. Overall, the

upper-body motion displays counter-rotational movements when compared to Fig. 3.

cAs a counterexample to this rule of thumb, CAM prioritization may be desirable in stance periods prior to

prolonged °ight, such as encountered in a running jump.37 In these cases, poor regulation of the CAM prior

to lifto® can have a severe impact on the ability to maintain an upright posture in °ight.
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whole-body control performs comparably for the prioritization ðfeetÞ > ðCoM ;CAM ;

and poseÞ with proper weighting of the CoM. While it may seem counterintuitive to

ever consider placing the linear and angular portions of the momentum controller at

di®erent priority levels, we note that linear and angular momentum of the system are

not completely analogous. While the centroidal linear momentum has a well-known

connection to the velocity of the CoM, the nonholonomic character of the angular

momentum38 precludes any similar relationship to a notion of an average system

orientation. Due to the stronger connection of the linear momentum to the CoM,

much previous work has described the bene¯ts of sacri¯cing angular momentum

tracking speci¯cally to improve CoM regulation.5,39,40 Still, it appears that the use of

a weighting or prioritization strategy for the CoM is an open selection for the whole-

body control designer.

5. Conclusion

While previous studies have presented specialized algorithms to compute the CMM

and the centroidal momentum velocity-dependent bias force, this work has shown

how an improved set of computations can be used to obtain these centroidal quan-

tities from the structural components of the dynamic equations of motion. When the

system mass matrix and Coriolis force are available, only the kinematics of the

°oating-base are needed as an input to our new procedure which computes the CMM

and bias force. When these joint-space quantities have already been obtained for

whole-body control, these results represent an improvement beyond previous spe-

cialized methods in terms of the general applicability of the computations as well as

their compactness and computational e±ciency.

An expanded example of whole-body control for a dynamic kick has demonstrated

the integration of centroidal momentum control into a whole-body framework, and

highlighted the power of this approach to ease whole-body motion authoring through

the prescription of angular momentum setpoints. The emergent upper-body motions

a®orded through CAM control provide reduced yaw moments at the ground contact,

decreasing the potential for foot slip in comparison to when no CAM control strategy

Fig. 9. Motion snapshots with a task prioritization of ðfeetÞ > ðCAM and CoMÞ > ðposeÞ and � ¼ 0:6.
With the CAM task at a higher priority than the pose, larger arm motions result. Perhaps surprisingly,

prioritized CAM control e®ectively places an unnecessary nonholonomic constraint on the system and

prevents convergence to an attainable nominal upper-body pose.
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is applied. With the insights provided here and the new procedure to compute the

centroidal dynamics, the incorporation of centroidal momentum control can be a

more accessible goal for future whole-body control approaches.
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