
Faster OVS Datapath with XDP

Toshiaki Makita William Tu
toshiaki.makita1@gmail.com u9012063@gmail.com

NTT VMware NSBU

Abstract
XDP is fast and flexible, but difficult to use as it requires people

to develop eBPF programs which often needs deep knowledge of
eBPF. In order to mitigate this situation and to let people easily
use an XDP-based fast virtual switch, we introduce Open vSwitch
(OVS) acceleration by XDP.

This has been already partly realized by recently introduced
OVS netdev type, afxdp. Afxdp netdev type bypasses kernel
network stack through AF XDP sockets and handles packets in
userspace. Although its goal, bringing XDP’s flexibility to OVS
datapath by enabling us to update the datapath without updating
kernel, was different from acceleration, afxdp is basically faster
than OVS kernel module. However, compared to native XDP in
kernel (i.e. non-AF XDP), it is more difficult to get optimal perfor-
mance since softirq and userspace process need to work in concert,
and it also imposes some overhead like skb conversion on packet
transmission due to missing zero-copy support in drivers.

We are trying to bring even faster data path to OVS by attaching
native in-kernel XDP programs which implement subset of OVS
datapath. We propose two different approaches to attach such XDP
programs from OVS userspace daemon. One is to attach XDP from
kernel through UMH (user mode helper), reusing TC hardware ac-
celeration interface. The other is to attach XDP directly from OVS
userspace daemon. The former has an advantage in that it enables
XDP for other flow-based network functionalities than OVS at the
same time. The latter has more flexibility in that users can attach
arbitrary XDP programs which may have minimal computational
cost for their use cases. In this article we discuss advantages and
drawbacks of those two approaches, and show how much the pro-
posed approach improve OVS datapath performance.
1. Introduction
1.1 XDP use-case: Performance improvement of kernel

network features
XDP, eXpress Data Path [1, 2, 6], is a super-fast and flexible kernel
networking path. One use-case of it is to replace existing network
functions with XDP-based implementation. Open vSwitch (OVS)
is a typical example of such network functions.

However, it is often difficult for XDP users to develop large
eBPF programs like OVS datapath. Especially there are a lot of
restrictions in eBPF verifier so developers tends to encounter errors
on loading programs into kernel, which is time-consuming as the
workaround is specific to eBPF and requires deep knowledge of
eBPF. This can discourage people from using XDP despite its
performance and flexibility.

One possible solution of this is to provide an XDP program
which is confirmed to work correctly as a replacement of OVS
existing datapath modules.

1.2 Open vSwitch and XDP
OVS is widely used in virtualized data center environments as a
software switching layer for a variety of operating systems. As
OVS is on the critical path, concerns about performance affect the
architecture and features of OVS. For complicated configurations,
OVS’s flow-based configuration can require huge rule sets. The key
to OVS’s forwarding performance is flow caching. As shown in
Figure 1(a), OVS consists of two major components: a slow path
userspace process and a fast path caching component, called the
datapath.

When a packet is received by the NIC, the host OS does some
initial processing before giving it to the OVS datapath. The dat-
apath first parses the packet to extract relevant protocol headers
and stores it locally in a manner that is efficient for performing
lookups, then it uses this information to look into a flow cache to
determine the actions to apply to the packet. If there is no match in
the flow table, the datapath passes the packet from the kernel up to
the slow path, ovs-vswitchd, which maintains the full determina-
tion of what needs to be executed to modify and forward the packet
correctly. This process is called packet upcall and usually happens
at the first packet of a flow seen by the OVS datapath. If the packet
matches in the datapath’s flow cache, then the OVS datapath exe-
cutes the corresponding actions from the flow table lookup result
and updates its flow statistics.

Currently OVS has three datapath implementations: Linux
kernel datapath, userspace netdev datapath, and Windows ker-
nel datapath. OVS-DPDK [12] is a community project that uses
the userspace netdev datapath with DPDK library as a kernel by-
passing packet I/O. With many years of optimization efforts from
the community, it shows the best performance among the three
datapath implementations. However, the system requirements of
deploying DPDK and configurations make DPDK not suitable for
every use case. Linux AF XDP is a Linux kernel’s socket interface
that provides high packet I/O rate. Recent version of OVS adds
support for AF XDP coupled with the userspace netdev datapath
and shows performance closed to OVS-DPDK. This is because it is
using the same datapath implementation as OVS-DPDK uses, with
the only difference that its packet I/O driver is AF XDP socket, not
DPDK’s device driver.

The current implementation of AF XDP on OVS, as shown in
Figure 1(b), loads a minimum XDP program in the network device
and forwards all packets from the XDP driver hook point to the
userspace datapath, without taking any advantage of the fast and
flexible XDP packet processing in kernel. In the article, we pro-
pose a faster XDP datapath to OVS by attaching native in-kernel
XDP programs which implement subset of OVS datapath, shown
in Figure 1(c). We propose two different approaches to attach such
XDP programs from OVS userspace daemon. One is to attach XDP
from kernel through UMH (user mode helper), reusing TC HW
acceleration interface. The other is to attach XDP directly from
OVS userspace daemon. The former has an advantage in that it en-

1



ovs-vswitchd
(Userspace Datapath)

Device RX Hook

Upcall Flow
Install

Driver

Hardware

Kernel

Uerspace

Network Stack

Fast Path
(Kernel Datapath)

ovs-vswitchd

Driver + XDP

Network Stack

AF_XDP Sock

(a) (b)

XDP in-kernel 
Processing

(c)

By-pass

Figure 1: The forwarding plane of OVS consists of two components: ovs-
vswitchd handles the complexity of the OpenFlow protocol, while the dat-
apath, or fast path, acts as a caching layer to optimize the performance. (a)
shows the datapath implemented as a kernel module, processing packets in
the kernel. (b) shows the AF XDP by-passed approach, using an XDP pro-
gram to redirect packets to a userspace datapath running in ovs-vswitchd.
(c) shows our proposed approach, loading the XDP program into kernel and
processing the flows by implementing parse, lookup, and actions in XDP
without always forwarding packets to userspace datapath.

Source 
Code 

LLVM + 
Clang

Network 
Stack

Driver

iproute

Kernel

Userspace

Verifier

pass

packet

eBPF
maps

XDP 
Program

Figure 2: The workflow of XDP eBPF development process and its packet
flow. The eBPF program is compiled by LLVM+clang and is loaded into
the kernel using iproute. The kernel runs the program through a verification
stage, and subsequently attaches the program to the XDP ingress hook
point. Once successfully loaded, an incoming packet received by the driver
will execute the eBPF program.

ables XDP for other flow-based network functionalities than OVS
at the same time. The latter with OVS userspace daemon shows
more flexibility in that users can attach arbitrary XDP programs
which may have minimal computational cost for their use cases.
We present design, implementation, and evaluation of the system
in the following sections.

2. Background
2.1 eBPF and XDP
eBPF, extended Berkeley Packet Filter, enables userspace applica-
tions to customize and extend the Linux kernel’s functionality. Pro-
grams written for eBPF are compiled to eBPF bytecode, which is an
instruction set that runs on the eBPF virtual machine inside the ker-
nel. On many platforms, the bytecode is run through a JIT to gen-
erate code that runs on the CPU architecture of the system, which
allows near native performance. eBPF programs are executed by
attaching them to hook points that have been added throughout
the kernel. A popular use-case for eBPF is tracing, which allows
administrators to write small eBPF programs and attach them to
subsystems such as the file system and CPU scheduler to get fine-
grained performance information on a live system. However, eBPF
is not limited to tracing; larger programs can also be written and
applied to different networking subsystems.

XDP [1, 2, 6] is the name for an eBPF program hook point that
executes within the network driver, the lowest level of the network
stack. XDP demonstrates high performance close to the line rate
of the device, since programs attached to the XDP hook point

are triggered immediately in the network device driver’s packet
receiving code path. For this reason, an eBPF program in XDP can
only access the packet data and limited metadata, since the kernel
has not processed the packet as much as hook points later in the
network stack, such as tc, the traffic control subsystem.

Figure 2 shows the typical workflow for installing an eBPF
program to the XDP hook points, and how packets trigger eBPF
execution. Clang and LLVM take a program written in C and
compile it to the eBPF instruction set, and then emit an ELF file that
contains the eBPF instructions. An eBPF loader, such as iproute,
takes the ELF file, parses its programs and map information, and
issues BPF syscalls to load the program. If the program passes
the BPF verifier, then it is attached to the hook point (in this case,
XDP), and subsequent packets through the XDP ingress hook will
trigger execution of the eBPF programs.

2.2 AF XDP
AF XDP is a new Linux address family that aims for high packet
I/O performance. It enables another way for a userspace program
to receive packets from kernel through the socket API. For exam-
ple, currently, creating a socket with address family AF PACKET,
userspace programs can receive and send raw packets at the de-
vice driver layer. Although the AF PACKET family has been used
in many places, such as tcpdump, its performance does not keep
up with recent high speed network devices, such as 40Gbps and
100Gbps NICs. A performance evaluation [7] of AF PACKET
shows fewer than 2 million packets per second using a single core.

AF XDP was added to the Linux kernel in version 4.18 [3]. The
core idea behind AF XDP is to leverage the XDP eBPF program’s
early access to the raw packet and provide a high speed channel
from the NIC driver directly to a userspace socket interface. In other
words, the AF XDP socket family connects the XDP packet receiv-
ing/sending path to the userspace, bypassing the rest of the Linux
networking stack. An AF XDP socket, called XSK, is created by
using the normal socket() system call, which makes integrating into
Linux-based system easier.

2.3 OVS Userspace DP with AF XDP
OVS’s architecture defines multiple interface types to allow alter-
native implementations of various parts of the system. The datapath
interface (dpif) allows different datapaths to be implemented. The
traditional one provides an interface used by kernel datapath im-
plementations. However, OVS provides a userspace datapath inter-
face implementation called dpif-netdev. dpif-netdev is designed to
be agnostic to how the network device accesses the packets, by an
abstraction layer called netdev. We implement a new netdev type
for AF XDP, which receives and transmits packets using XSK.
We insert an XDP program and an eBPF map that interacts with
XDP program to forward packets to the AF XDP socket. Once the
AF XDP netdev receives a packet, it passes the packet to the dpif-
netdev for packet processing, as shown in Figure 1(b).

The current OVS implementation does not process packet in the
context of XDP, but it simply forwards every packet to the OVS
Userspace DP, the dpif-netdev. This paper proposes offloading the
packet processing into the XDP context, using the existing offload
API used by TC-flower and DPDK rte flow. The result shows better
integration with kernel and better performance.

2.4 OVS Hardware offload mechanism
As described above, OVS has flow offload mechanism using TC-
flower. TC-flower is an in-kenrel flow classifier feature which can
offload flows to hardware NIC, so OVS TC-flower offload is used
for flow offload to hardware.

Figure 3 shows how TC-flower is used to offload flows. The
offload for each flow is triggered when the flow is installed in

2



Slow path

TC flower
Datapath

(Fast path)
kernel or userspace
receive
packet

upcall install flows

install flows
(HW offload)

Figure 3: OVS Hardware offload using TC flower

Slow path

TC flower
Datapath
(kernel)

receive
packet

upcall install flows

install flows
XDP

(attached by xdp_flow)

Figure 4: xdp flow with OVS

datapath flow table if hardware offload feature of OVS is enabled.
This typically happens when datapath cannot find an entry for a
received packet and does upcall.

The TC offload functionality installs the offloaded flow in ker-
nel’s TC flower classifier. TC flower, if configured to offload to
hardware, installs the flow in NIC hardware. After that, any packets
that match the flow installed in the NIC is handled and forwarded
in the NIC instead of CPU (datapath).

We use this offload mechanism in both of two proposed ap-
proaches.

3. Faster Open vSwitch Datapath with XDP
As desribed in section 1, by providing an XDP program which
is confirmed to work correctly as a replacement of OVS existing
datapath, we can provide an easy way to make OVS datapath faster.
AF XDP netdev partially implements this idea by using existing
userspace datapath through AF XDP. However, with this model
userspace daemon and XDP in kernel needs to work in concert with
each other, which can result in suboptimal performance.

We propose two approaches for introducing XDP programs
running fully in kernel context to improve performance with XDP.

3.1 xdp flow
xdp_flow [10] is an in-kernel infrastructure to offload flows to
XDP. xdp flow is a generic flow offload engine using XDP. Any
flow-based in-kernel features such as TC flower and nftables can
be offloaded to XDP by xdp flow through flow hardware offload
mechanism in kernel. OVS is also offloadable through TC flower
because OVS uses TC flower as an offload engine.

Figure 4 shows how xdp flow works for OVS. xdp flow requires
OVS to enable TC offload. When xdp flow is enabled, flows of-
floaded from OVS to TC flower are offloaded to XDP from TC
instead of NIC hardware through TC hardware offload mechanism.

Figure 5 shows more details of how xdp flow uses in-kernel
hardware flow offload mechanism. xdp flow is implemented as
a driver for hardware flow offload. When it receives a request
for offload, it installs the flow in XDP instead of hardware NIC.
This model requires a feature to attach XDP programs to NICs
from kernel. We implemented such a feature by using user-mode
blobs [5, 14] introduced for bpfilter [4, 13]. User-mode blobs are
user mode programs embedded in kernel. They can be run as pro-
cesses through user-mode helper (UMH [8]) mechanism. In short,
kernel modules can run embedded user-mode programs through

Slow path

TC flower
Datapath

(kernel)

receive
packet

upcall install flows

install flows

XDP xdp_flow
(TC offload driver in kernel)

xdp_flow UMH
(userspace daemon)

eBPF maps
(flow tables for XDP)

install flows

update
lookup

attach program

Figure 5: xdp flow Details

Slow path

Datapath
(userspace)

receive
packet

upcall install flows

XDP

xdp flow api provider

eBPF maps
(flow tables for XDP)

update

lookup

attach
programAF_XDP Sock

Figure 6: xdp flow api provider

user-mode blobs mechanism. With this mechanism, xdp flow
launch a daemon program on loading its kernel module. The dae-
mon communicates with xdp flow kernel module, and is responsi-
ble for handling any eBPF manipulation including attaching XDP
programs and updating eBPF maps used for flow tables in the XDP
programs. The attached XDP program has maps for flow tables and
handle packets based on the table. If any table miss happens, e.g.
the flow for the packet is not supported by the XDP program, the
packet is passed to the upper layer using XDP PASS action, and
then the packet will be handled by OVS kernel datapath as normal.

With this xdp flow mechanism, users can easily make use of
XDP because the difficult part, making XDP programs and main-
tenance of flow tables in XDP, is automatically handled by kernel.
OVS users just need to enable TC offload in OVS and xdp flow
in kernel. xdp flow can be enabled by ethtool command per net-
work interfaces, so it is simple. Once it is enabled, OVS can be used
as normal, and XDP offload for each flow is done automatically.

The advantage of this model is that it enables flow offload not
only for OVS but also for other flow-based features like TC flower
(without OVS) and nftables.

However, it has some drawbacks as well mainly because the em-
bedded program is not modifiable. Users cannot customize the pro-
gram for thier use-cases. XDP is fast when it has minimal function-
alities for its use-case, so non-modifiable program is unfavorable
performance-wise. The embedded program also cannot work with
AF XDP netdev in OVS as AF XDP programs need to be loaded
from processes which use the AF XDP socket connected to xsk
maps in the XDP programs.

These drawbacks can be overcome by handling XDP programs
from OVS daemon ovs vswitchd, sacrificing the merit of code shar-
ing with other flow-based kernel features. Xdp flow api provider
illustrated in the next section is based on this idea.

3.2 xdp flow api provider
Flow api provider means offload driver of OVS. Our second ap-
proach is xdp flow api provider [11], which is an OVS offload
driver using XDP.

The idea is similar to xdp flow but it directly uses OVS flow of-
fload functionality instead of using TC flower offload driver (Fig-
ure 6). Another difference is that it does not use embedded or un-
modifiable XDP programs. Instead of embedded programs, we pro-

3



vide a reference XDP program. Users can customize the XDP pro-
gram and load it instead of the original one. Xdp flow api provider
in OVS daemon detects whether the loaded program has necessary
features like maps with certain names for flow tables, and if it de-
termines the program is usable for flow offload, the driver starts
offloading flows to the program.

This mechanism allows the program to work with AF XDP
netdev as well as allowing for the use of a minimal program for
each use-cases of individual users.

3.3 Reference XDP program for xdp flow api provider
As described in the previous section, we provide a reference XDP
program in OVS tree for xdp flow api provider. It is meant for
general OVS use, but users can remove any unnecessary code like
key parsers or actions, or remove unneeded keys in flow hash table
to make it faster.

Even without keys removal in code, it can reduce flow table hash
key size by just redefining the size by a macro with a smaller value.
The program uses miniflow mechanism which is originally used in
ovs vswitchd. Miniflow can dynamically compress the key size by
removing unused keys. Although it is impractical to dynamically
change hash key size online due to eBPF map restriction, since it
is rare to use the combination of all the keys, the maximum needed
key size will be far less than full key size. Thus users can just
choose a reasonable key size for flow hash tables and reduce the
overhead.

3.4 Performance
In this section we show packet forwarding throughput of xdp flow
api provider compared to AF XDP netdev and traditional ker-
nel datapath. We used 2 machines connected through an ethernet
switch. Each machine has:

• CPU: Intel Xeon Silver 4114, 2.20 GHz.
• NIC: Intel XXV710 25-Gigabit, i40e driver.
• kernel: 5.5.5
• Open vSwitch: 2.13 + our XDP offload patch

spectre v2 mitigation is disabled on each machine.
One machine is used for the sender and the other is used for

the receiver. The sender sends one flow UDP packets. The receiver
receives them on an i40e NIC, and forwards them to another inter-
face. Packets are discarded after forwarding.

The tests was performed in two configurations.

• i40e-veth
The receiver forwards packets from i40e NIC to veth interface.
The peer of the veth interface has an XDP program which
only does XDP DROP for any packets. Counts the number of
dropped packets in the XDP program.

• i40e-i40e
The receiver forwards packets from i40e NIC to i40e NIC. The
forwarded packets are discarded on another machine. Counts
the number of transmitted packets on the sending i40e NIC
of the receiver machine by using ip -s -s link show com-
mand.

In each test we used pktgen to generate traffic from the sender
machine. The sending rate is approximately 37 Mpps, almost line
rate of 25 Gbit Ethernet. All packets belong to one flow of UDP (the
same source/destination IP and port). The receiver always receives
packets on a particular CPU core.

Figure 7 shows the results. kernel module is traditional ker-
nel datapath. afxdp uses netdev (userspace) datapath and net-
dev of type afxdp with xdp-mode native-with-zerocopy.

(a) i40e-veth (b) i40e-i40e
kernel module 1.134 1.27
afxdp 0.49 2.214
xdp flow api provider 3.713 3.471

0
0.5

1
1.5

2
2.5

3
3.5

4(Mpps/core)

Figure 7: Throughput of AF XDP and XDP Flow Api Provider

xdp flow api provider is what we proposed in the previous
section. It uses netdev (userspace) datapath and netdev of type
afxdp-nonpmd with xdp-mode native and xdp flow offload.
xdp flow api provider uses different netdev type and xdp-
mode from afxdp because the best configuration is different from
AF XDP without XDP offload. For XDP offload, zerocopy fea-
ture of AF XDP has non-negligible overhead due to packet copy
on XDP REDIRECT, so use native XDP without zerocopy. Note
that veth does not have zerocopy feature as of kernel 5.5.5, so
it is always disabled on veth. afxdp netdev type runs poll mode
driver (PMD) in userspace to boost AF XDP performance. This
does not improve XDP offload performance and consumes more
CPU time, so used afxdp-nonpmd for XDP offload. The unit of
the results is Mpps per core, which is 1,000,000 packets per sec-
ond per core. Since netdev type afxdp uses two cores for one flow
(one is for PMD and the other is for softirq), we divided its re-
sults by two. Note that we can use another configuration which
uses only one core for afxdp without XDP offload, where both of
PMD and softirq run in one core. However, this decreases the per-
formance in pps/core even with using use-need-wakeup feature
and/or afxdp-nonpmd, both of which can improve performance in
such a situation.

The results show that in each case xdp flow api provider
improves performance of AF XDP. Especially with veth AF XDP
has less performance than kernel, but XDP offload shows nearly
the same performance with non-veth case (i40e-i40e). We did not
identify the root cause of the low performance of AF XDP with
veth, but one possible reason is that veth does not have zerocopy
feature.

4. Future Work
We are now mainly working on upstreaming xdp flow api provider.
Although we have a working patch set of basic functionality [11],
there are a couple of future work.

• Support for more keys and actions
Currently we have implemented very basic keys and actions
with flow api provider, e.g. mac address, vlan id, ip address, l4
ports match and vlan push/pop, output action. In order to apply
xdp flow api provider to wide range of use-cases, we should
more keys and actions like tunneling-related ones.

• Further performance improvement
XDP REDIRECT from i40e to veth can acheive 10 Mpps/core
if there is no extra logic in an XDP program [9]. While testing
xdp flow, we found that if we can remove some overhead in ker-
nel the throughput can be up to 5.2 Mpps/core [10]. This should
also apply to xdp flow api provider, so there is room to improve
the performance at least at kernel side XDP infrastructure.

• Hardware offload
Although XDP mechanism itself has hardware offload ability,
currently the reference XDP program cannot be offloaded to

4



NIC hardware. This is because it uses map-in-map feature of
eBPF to support subtables per flow mask for the datapath flow
table, and map-in-map is not offloadable currently due to XDP
offlaod restriction. If XDP offload can support map-in-map, or
if we can support XDP programs without map-in-map, hard-
ware offload through XDP may be possible in the future.

5. Related Work
5.1 OVS-DPDK
OVS has another fast datapath, OVS-DPDK [12]. While DPDK is
in some cases faster [6] than XDP, it is not always the best choice
due to some limitations. For example it does not support veth in-
terfaces which are often used in containers environment. Instead
it supports virtio-user ports for high speed container networking,
but it requires containers to run DPDK programs. Another limita-
tion is that it exclusively owns a network interface. XDP, including
AF XDP, is more cooperative with kernel, and can pass received
packets to upper layer kernel network stack. Thus, network accel-
eration using XDP like xdp flow api provider can be more flexible
at the same time the performance is comparable with DPDK.

5.2 bpfilter
Bpfilter [13] is an in-kernel feature that automatically load eBPF
programs, attached to TC or XDP, which implements iptables rules
configured in kernel. xdp flow uses a similar mechanism with bp-
filter in that both of them automatically install the same functional-
ity with an existing kernel feature using eBPF through user-mode
blobs [14]. One big difference is that bpfilter dynamically assem-
bles an eBPF program in its UMH based on configured iptables
rules while xdp flow uses an embedded non-modifiable eBPF pro-
gram for XDP. The reason xdp flow does not dynamically assem-
ble eBPF programs is that flow insertion is typically triggered by
upcall. Upcall is caused by packet reception, so this rate is not
controllable by the OS. Also its rate is often high, so it is not very
practical to dynamically assemble eBPF programs on upcall. In-
stead, xdp flow uses eBPF hash maps to implement flow tables.
Compared to sequential access, which is O(n), used by eBPF pro-
grams dynamically assembled by bpfilter, the complexity of hash
maps access is O(1). So in large flow table case, the approach used
by xdp flow should have less overhead. On the other hand non-
modifiable eBPF program has disadvantage that minimal programs
for each use-case is not possible, but it can be resolved by xdp flow
api provider.

6. Conclusion
We proposed two approaches to offload flows to XDP. Currently
we are working on the second approach, xdp flow api provider, and
it shows solid performance improvement. With this feature people
can use XDP to make OVS faster without learning extensive eBPF
knowledge to write XDP programs on thier own.

References
[1] XDP: eXpress Data Path. https://www.iovisor.org/

technology/xdp, 2018.
[2] Jesper Dangaard Brouer. XDP – eXpress Data Path, intro and future

use-cases. NetDev 1.2, 2016.
[3] Jonathan Corbet. Accelerating networking with AF XDP. https:

//lwn.net/Articles/750845/, 2018.
[4] Jonathan Corbet. Bpf comes to firewalls. https://lwn.net/

Articles/747551/, Feb 2018.
[5] Jonathan Corbet. Bpfilter (and user-mode blobs) for 4.18. https:

//lwn.net/Articles/755919/, May 2018.
[6] Toke Høiland-Jørgensen, Jesper Dangaard Brouer, Daniel Borkmann,

John Fastabend, Tom Herbert, David Ahern, and David Miller. The ex-
press data path: Fast programmable packet processing in the operating
system kernel. In CoNEXT’18: International Conference on emerg-
ing Networking EXperiments and Technologies. ACM Digital Library,
2018.

[7] Magnus Karlsson, Björn Töpel, and John Fastabend. AF PACKET V4
and PACKET ZEROCOPY. In Netdev Conference 2.2, 2017.

[8] Linux Kernel. call usermodehelper exec. https:
//www.kernel.org/doc/htmldocs/kernel-api/
API-call-usermodehelper-exec.html.

[9] Toshiaki Makita. veth: Driver XDP. https://
patchwork.ozlabs.org/project/netdev/cover/
1533283098-2397-1-git-send-email-makita.toshiaki@
lab.ntt.co.jp/, Aug 2018.

[10] Toshiaki Makita. xdp flow: Flow offload to XDP. https://lwn.
net/Articles/802653/, Oct 2019.

[11] Toshiaki Makita. XDP offload using flow API provider.
https://mail.openvswitch.org/pipermail/ovs-dev/
2020-June/372184.html, Jun 2020.

[12] OVS Community. Open vSwitch with DPDK. http://docs.
openvswitch.org/en/latest/intro/install/dpdk/, 2018.

[13] Alexei Starovoitov. net: add skeleton of bpfilter kernel module.
https://patchwork.ozlabs.org/project/netdev/patch/
20180522022230.2492505-3-ast@kernel.org/, May 2018.

[14] Alexei Starovoitov. umh: introduce fork usermode blob() helper.
https://patchwork.ozlabs.org/project/netdev/patch/
20180522022230.2492505-2-ast@kernel.org/, May 2018.

5


