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1. Proofs and Logic

1.1 Negations and contrapositives

Negate the following statements, moving all negations (e.g. “not”) onto individual predi-
cates/propositions. You may use shorthand to do intermediate work, but your final answer
should be in English. Similarly, construct the contrapositive of each statement.

(a) If my plant is dead, then I didn’t water it or I left it in the dark.

(b) If vampires exist, then there is a city c such that c is full of vampires and c does not
have a blood bank.

(c) For every martian w, if w is green, then w is tall or w is ticklish.

(d) For any house h, for any dog d, d does not live at h or h has a supply of dog food.

(e) For every movie m, if m is a fantasy movie and m is popular, then m has a cute lead
actor and m has a big special effects budget.

1.2 Direct proof and disproof

For each claim, prove it using direct proof or disprove it using a concrete counterexample.

(a) For any integer k, if k is odd, then k3 is odd.

(b) For any integers p and q, (p+ q)2 = p2 + q2.

(c) For any real numbers w, x, y, and z, if w < x and y < z then wy < xz.

(d) For all real numbers x and y, where x 6= 0, if x and y+1
3

are rational, then 1
x
+ y is

rational.
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1.3 Variations on direct proof

Prove the following claim. Your proof should divide into cases based on the sign of |x+ 7|.

(a) For any integer x, if |x+ 7| > 8, then |x| > 1.

Prove the following claims by contrapositive. Begin your proof by explicitly writing out
the contrapositive. Then use direct proof to prove the contrapositive.

(b) For all real numbers x and y, if x+ y ≥ 2, then x ≥ 1 or y ≥ 1.

(c) For all integers m and n, if mn is even, then m is even or n is even.

(d) For all real numbers x, if x2 − 3x+ 2 > 0, then x ≥ 2 or x < 1.

(e) For any integers m and n, if 7m+ 5n = 147, then m is odd or n is odd.

1.4 Direct proof with inequalities

Prove the following claims. Be careful as you manipulate inequalities, e.g. check signs.

(a) For any integer k, if k > 4 then 2k + 1 < k2.

(b) For any integer k, if k > 4 and k2 < 2k, then (k + 1)2 < 2k+1. (Hint: use the previous
result.)

(c) For any integers m and k, if 0 < 1
k
< m then m

m2+1
< k.
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1.5 Logic operators

The late 19th century philosopher Charles Peirce (rhymes with ‘hearse,’ not ‘fierce’) wrote
about a set of logically dual operators and, in his writings, coined the term ‘Ampheck’ to
describe them. The two most common Ampheck operators, the Peirce arrow (written ↓ or
⊥ or ∨ by different people) and the Sheffer stroke (written ↑ or | or ∧ by different people),
are defined by the following truth table:

p q p ↑ q p ↓ q
T T F F
T F T F
F T T F
F F T T

1. (4 points) The set of operators {∧,∨,¬} is functionally complete, which means that
every logical statement can be expressed using only these three operators. Is the
smaller set of operators {∨,¬} also functionally complete? Explain why or why not.

2. (4 points) Express ¬p using only the Sheffer stroke operation ↑.

3. (5 points) Express p∨ q using only the Sheffer stroke operation ↑. Justify your answer
(e.g. using a truth table).

4. (3 points) Explain why the set of operators {↑} is functionally complete.

5. (4 points) Express the Sheffer stroke operation p ↑ q using only the Peirce arrow ↓
operation. Explain why the set of operators {↓} is functionally complete.
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2. Number Theory

2.1 Modular arithmetic

When doing computations in modular arithmetic, organize your work so that intermediate
results are kept small. If you’re working in base k, your final result should be in the form
[n] where 0 ≤ n < k.

(a) In Z15, what are some values in the congruence class of [14].

(b) In Z15, find the value of [7] + [14] ∗ [3].

(c) Find the first six powers of [5] in Z7. That is compute [5]1, [5]2, and so on up to [5]6.

(d) Calculate the value of [9]12 in Z11. (Hint: try repeated squaring.)

2.2 Thinking about number theory

(a) Is there an integer x satisfying both congruences simultaneously? x ≡ 7 (mod 9)
x ≡ 5 (mod 12)

(b) Is there an integer x satisfying both congruences simultaneously? x ≡ 5 (mod 6)
x ≡ 3 (mod 10)

(c) Find an integer solution for the equation 5m + 13n = 1. Is it the only solution or are
there others?
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2.3 Thinking about gcd

Are the following claims true or false? Give a counter-example (if false) or an informal
explanation (if true).

(a) For any positive integers p, q, and r, if gcd(p, q) = 1 and gcd(q, r) = 1, then gcd(p, r) = 1.

(b) For any positive integers p, q, and r, if gcd(p, q) = 1 and gcd(p, qr) = 1,
then gcd(p, r) = 1.

(c) For any positive integers d, n, m, and p, if n ≡ m (mod k) then dn ≡ dm (mod k)

(d) For any positive integers a, b, c, if a | bc and gcd(a, b) > 1, then a | c.

2.4 Proof using the divides relation

Prove the following claims directly from the definition of “divides”:

(a) The divides relation is transitive, i.e. for any integers a, b, and c, if a | b and b | c, then
a | c.

(b) For any integers p, q, and r, p non-zero, if p | 3q and 3q | r, then p | 3q + r.

2.5 Proofs with congruence mod k

(a) Prove that, for all integers x, y, p, q and m, with m > 0, if x ≡ p (mod m) and y ≡ q
(mod m), then (x2 + y2) ≡ (p2 + q2) (mod m).

(b) Prove that, for all integers x, y, p, q and m, with m > 0, if x ≡ p (mod m) and y ≡ q
(mod m), then x2 + xy ≡ p2 + pq (mod m).

(c) Show that if x, y andm are integers withm ≥ 2, then if x ≡ y (mod m) then gcd(x,m) =
gcd(y,m).
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2.6 Euclidean Algorithm

Recall that the Euclidean Algorithm is a quickly converging method of determining the
greatest common denominator (GCD) of two numbers. The algorithm has the following
pseudocode:

gcd(a,b: positive integers)

x := a

y := b

while (y > 0) do:

r := remainder(x,y)

x := y

y := r

end while

return x

Note that this pseudocode handles only positive integers. To adapt it for negative inte-
gers, take the absolute value of the inputs first.

Trace the Euclidean algorithm on the the following pairs of integers by drawing a table
of values for x, y, and r

(a) 1224 and 850

(b) 2639 and 4176
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3. Sets

3.1 Set Builder Notation

(a) Compute {(x, y) ∈ Z2 : x ≥ 0 and y ≥ 0 and x+ y = 3}.

(b) Compute {x ∈ Z : −20 ≤ x ≤ 20 and x ≡ 2 (mod 7)}.

(c) Compute {|x| : x ∈ Z and − 2 ≤ x ≤ 7}.

(d) Compute {(2x, x3) : x ∈ R and x2 = 2}.

3.2 Concrete Subset Proof

Let A = {(p, q) ∈ R2 : p2 + q2 ≤ 1} and B = {(x, y) ∈ R2 : |x| ≤ 1, |y| ≤ 1}. Prove that
A ⊆ B, by choosing a representative element from the smaller set and showing that it is in
the larger set.

3.3 Abstract Subset Proofs

Prove the following set containments and show, using a concrete counterexample, that
the reverse containment does not hold.

(a) (A ∪B) ∩ C ⊆ A ∪ (B ∩ C).

(b) (A− C)− (B − C) ⊆ (A−B).
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4. Relations

Reflexive: For all x ∈ X , xRx.

Irreflexive: For all x ∈ X , x 6Rx.

Not Reflexive: There exists x ∈ X such that x 6Rx

Symmetric: For all x, y ∈ X such that x 6= y, if xRy, then yRx

Antisymmetric:

For all x, y ∈ X with x 6= y, if xRy, then y 6Rx (useful for intuition!)

For all x, y ∈ X , if xRy and yRx, then x = y (useful for proofs!)

Not Symmetric: There exist x, y ∈ X with x 6= y such that xRy and y 6Rx

Transitive: For all a, b, c ∈ X , if aRb and bRc, then aRc

Equivalence Relations are reflexive, symmetric, and transitive.

Partial Orders are reflexive, antisymmetric, and transitive.

Strict Partial Orders are irreflexive, antisymmetric, and transitive.

4.1 Relation properties

(a) Define a relation ∼ on intervals of the real line by (x, y) ∼ (p, q) if and only if y = p or
x = q. Is ∼ an equivalence relation? Briefly justify your answer.

(b) Define a relation ∼ on the positive real numbers such that x ∼ y if and only if xy = 1.
Is ∼ reflexive, irreflexive, both, or neither? Is ∼ transitive? Briefly justify your answers.
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4.2 Partial Orders

(a) The directed graphs below define two relations, R and T , on the set {A,B,C,D}. Is R
a partial order? Is T a partial order? Justify your answers.

R: A B

C D

T: A B

C D

(b) Define a relation � on the 2D plane (Z2) such that (x, y) � (p, q) iff x ≤ p and y ≤ q.
Prove that � is a partial order.

(c) Define a relation � on pairs of closed intervals of the real line such that [a, b] � [c, d]
iff b ≤ c. Prove that � is antisymmetric. Assume that the first endpoint of a closed
interval must be less than or equal to the second endpoint.

4.3 Equivalence Relations

For each relation, find what’s in the specified equivalence classes by substituting concrete val-
ues into the definition of the relation. Then write a general description of all the equivalence
classes for the relation. Finally prove that the relation is an equivalence relation.

(a) Define ∼ on the 2D plane Z2 by (a, b) ∼ (c, d) iff a + d = b + c. What’s in [(1, 3)]?
[(0, 4)]? [(2, 4)]?

(b) Define ∼ on Z such that x ∼ y iff 4 | 3x+ 5y. What’s in [2]? [3]?

(c) Define ∼ on Z+ by n ∼ m iff {p ∈ P : p | n} = {p ∈ P : p | m}, where P is the set of
primes. What’s in [12]? [18]? [20]?
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5. Functions and Onto

5.1 Nested Quantifiers

Explain why each of the following propositions is true or false:

(a) ∀x ∈ R, ∃y ∈ R, y3 ≤ x

(b) ∃x ∈ N, ∀y ∈ N, xy = x

(c) ∀x ∈ R, ∃y ∈ Q, |x− y| ≤ 0.01

(d) ∃y ∈ Q, ∀x ∈ R, |x− y| ≤ 0.01

(e) ∃x ∈ N, ∀y ∈ N,GCD(x, y) = 1

(f) ∀x ∈ Z, ∃y ∈ Z, x = y2

(g) ∀x ∈ Q, ∃(w, y) ∈ Z2, x = w
y

(h) ∃(w, y) ∈ Z2, ∀x ∈ Q, x = w
y
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5.2 Meditating on the Definition of Onto

Consider a function f : A → B. Which of the following nested quantifier statements states
that f is onto? What mathematical concepts (if any) do the other three statements represent?

(a) ∀b ∈ B, ∃a ∈ A, f(a) = b

(b) ∀a ∈ A, ∃b ∈ B, f(a) = b

(c) ∃b ∈ B, ∀a ∈ A, f(a) = b

(d) ∃a ∈ A, ∀b ∈ B, f(a) = b

5.3 Concrete Onto Proofs

Prove that the following functions are onto:

(a) g : R → R by g(x) = 17− 2x

(b) f : Z2 → Z by f(x, y) = xy + 27

5.4 Abstract onto proof

Suppose that f : N → N is an onto function. Let’s define g : N2 → N such that

g(x, y) = f(x)f(y)

Prove that g is onto.
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6. Function Properties

Determine whether each function is onto and/or one-to-one. Briefly explain why it is or give
a concrete counter-example showing why it is not. Warning: check each definition to make
sure the function is properly defined, e.g. exactly one output for each input, output values
all lie in declared co-domain.

(a) b : Z → Z by b(n) = 2n

(b) f : C → R by f(x+ yi) = x+ y

(c) g : R → R by g(x) = x3 + 7

(d) h : N2 → N by h(x, y) = 2x3y

(e) k : [0, 1] → R2 by k(x) = x(3, 4) + (1− x)(1, 2), where the product of a number a and a
pair (x, y) is defined to be (ax, ay).

(f) l : R → R by l(x) = ⌊x⌋

(g) m : N2 → N by m(x, y) = x− y

(h) p : Z2 → Z by p(x, y) = xy

(i) q : Q → R by q(x) = x

Can you make some of these functions one-to-one or onto by changing their domain
and/or co-domain?
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7. Functions and One-to-one

When proving that a function f is one-to-one, use the outline where you assume that f(x) =
f(y) and show that x = y. Do not use facts about derivatives or increasing functions.

7.1 Concrete One-to-one Proofs

Prove that each of the following functions is one-to-one.

(a) g : R → R by g(x) = 2x+1

(b) h : N → Z by h(x) = x2 + 27

7.2 Abstract One-to-one Proof

Suppose that f : Z → Z is a one-to-one function. Let’s define g : Z → Z2 such that

g(x) = ( 2f(x), |f(x)| )

Prove that g is one-to-one.

7.3 Abstract proof using Composition

(a) Suppose that A,B, and C are sets and f : B → C and g : A → B are functions. Prove
that if f ◦ g is onto and f is one-to-one, then g is onto.

(b) Give a concrete counter-example (involving small sets!) showing why the assumption
that f is one-to-one is necessary in (a).
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7.4 Permutations

(a) How many distinct strings can be formed by the letters in the word BOOTHBAY?

(b) Central Plains Pizza offers three choices for pizza diameter, two choices for crust thick-
ness, and 12 choices of toppings. Suppose that you limit yourself to 5 or fewer toppings.
How many different pizzas can you construct?

(c) In the new SCOFF programming language, variable names are strings of length between
1 and 10 (inclusive) lower-case ASCII letters (of which there are 26) where adjacent
letters cannot be the same. So, ‘badtb’ and ‘pwcycsi’ are both fine, but ‘abba’ is bad
(two adjacent letters are the same) as are ‘babybabybaby’ (too long), ‘rolo37’ (contains
numbers), and ‘VeryFunny’ (not all lowercase). How many distinct variable names are
there? Express your answer using summation notation.

7.5 Pigeonhole Principle Proofs

(a) Let d be a positive integer. Prove that in any set A = {x1, ..., xd+1} of d + 1 integers
there will be a pair of integers xi and xj which are congruent modulo d.

(b) What is the maximum integer k such that, no matter how 18 people are seated in a
row of 25 seats, there are k consecutive occupied seats? Prove it using the Pigeonhole
Principle.

(c) A software engineer slept for 61 hours over 10 nights. Assuming that the engineer sleeps
precisely an integer number of hours each night show that on some pair of consecutive
nights she slept at least 13 hours.

14



8. Graph terminology

8.1 Paths

(a) For each pair of nodes, describe a path from the first vertex to the second. You may use
the given edge labels to name the edges. Give several different walks between the same
two nodes.

B

E

C

D

F

A

1

2 3

4

5

6

Vertex pairs to consider: (A,F), (F,E), (B,D), (B,F)

(b) List all the paths from b to e in graph G below.

G

b c

a d

e
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8.2 Cycles

How many different cycles are in the graph K4?

(a) Count the number of cycle subgraphs, i.e. don’t worry about where each cycle starts/ends.

(b) Count the number of different walks (i.e. ordered lists of nodes with a specific starting
point) that are cycles.

8.3 Graph Connectivity

(a) Is each of these graphs connected? If not, list the nodes in each connected component.

A

B

C

D E

F

G

H J K

L M

N O

P Q

G2:G1:

(b) How many connected components does this graph have?

b c

a de

f

g

h
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8.4 Graph Diameters

Recall that for a connected, simple graph G we define the distance between any two nodes
vi and vj as the number of edges on the shortest path between them. Then the diameter

G is the maximum distance between any pair of nodes in G.

Find the diameters of Kn, Cn, and Wn.

8.5 Euler circuits

Find an Euler circuit in each graph beginning at S, or explain why this isn’t possible.

S

a b

c

d

ef

g

h

i j

k

lm

S

a b

c

d

ef

g

h

i j

k

lm

n

G1: G2:
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9. Graph isomorphsim

9.1 Isomorphic or not?

Give an isomorphism between the two graphs or briefly explain why this is not possible.

A1:
1 2

34

5 6

78

A2:
A G

B H

C I

D J

B1:

A

B

C

E D

F B2:

1

2

3 4 5

6
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9.2 Proving non-isomorphism

Prove that the two graphs in each pair are not isomorphic:

A1: A

B
C

D
E

A2: 1

2
3

4

5

B1: A

B
C

D
E

B2: 1

2
3

4

5

C1:

A

B C
D E

F

C2:

1 2

3 4 5

6

D1: A B

C

DE

F

D2:

1 2

3

45

6
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9.3 Counting isomorphisms

(a) How many isomorphisms are there from H to itself? (Notice that H contains all nine
nodes.)

H :

z

y

wp

u

v

a

bc

(b) How many isomorphisms are there from G to itself? (Notice that G contains all ten
nodes.)

G:

b c

a de

f

g

h

k

m
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10. Two-way Bounding

10.1 Set Equality Proofs

Prove that the following pairs of sets are equal. Or, if you are short on time, outline the
proof. That is, write the main structure of the proof, and also apply the definitions of the
two sets A and B, but leave out the algebra detail required to connect one definition to the
other.

(a) A = {(x, y) ∈ R2 | x2 + y2 = 256} and B = {(16 cos t, 16 sin t) | t ∈ R}

(b) X = {10x+ 15y : x, y ∈ Z} and Y = {n ∈ Z : n = 5k for some k ∈ Z}
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10.2 Chromatic Number

Recall that the justification that a particular chromatic number is valid requires bounding
the number from above and below. Therefore you must give an explicit coloring to produce
an upper bound and produce a valid argument that no smaller number of colors will work
to produce a lower bound.

The argument justifying the lower bound often involves finding a copy of Kn (where n is
the chromatic number you are attempting to validate) as a subgraph. Sometimes, however,
you have to work through the space of possible n− 1 colorings by hand and show that none
of them work.

Find and justify the chromatic numbers for each of the following graphs.

A: 1

2
3

4

5

B: 1

5

3

4

2

C: 1

5

3

4

2

6

D:

a b

cd

e

f

g

h

E: 1

5
3

4

2

6

F :
AB C

D E

F G

H
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11. Induction

11.1 Simple examples

Prove the following formulas using induction:

(a)
∑n

i=1 i2 = n(n+1)(2n+1)
6

(for all positive integers)

(b)
∑n

k=1
1

k(k+1)
= n

n+1
(for all positive integers)

(c) (
∑n

i=0 i)
2
=

∑n

i=0 i
3 (for all natural numbers)

(d) (cos x+ i sin x)n = cos(nx) + i sin(nx) (for all natural numbers)

Hint for (c): you can use the fact that
∑n

i=0 i =
n(n+1)

2
.

Hints for (d): i is the square root of −1; look up the formulas for the sin and cosine of
the sum of two angles.

11.2 Induction with congruences

We’ve proved that if a ≡ b (mod p) and c ≡ d (mod p), then a + c ≡ b + d (mod p) and
ac ≡ bd (mod p), for any integers a, b, c, and d and any positive integer p. Using one or
both of these facts and induction, prove the following claim:

For any integers a and b and any positive integers n and p, if a ≡ b (mod p),
then an ≡ bn (mod p).
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11.3 Geometrical strong induction

Isaiah is making cupcakes and wants to put a single square of chocolate on top of each. So
he is breaking up larger chocolate bars (e.g. 4 squares by 6) into their individual squares.
Each break divides the bar in two along a straight line.

For example, we might divide a 4 × 3 bar into a 4 × 2 bar and a 4 × 1 bar. We might
then break the larger piece in the other direction, so as to get two 2× 2 bars and the 4× 1
bar. Nine more breaks are required to finish the process.

Isaiah discovers that an n × m bar always seems to require nm − 1 breaks, apparently
regardless of which sequence of directions you choose for the breaks. Use induction to prove
that he’s right.

Hint: Your induction variable should be a single integer that measures the size of the
bar. Be sure to explain what this variable is (in terms of the chocolate bars) at the start of
your proof.

11.4 A broken induction proof

What’s wrong with the following induction “proof?”

Claim: all horses are the same color.

Proof: We’ll show that if S is any set of horses, all horses in S have the same color, by
induction on the size of S.

Base: The claim is clearly true for a set containing only one horse.

Induction: Suppose that if T is any set of k − 1 horses, all horses in T have the same
color. Let S be a set of k horses. We need to show that all horses in S have the same color.

Suppose S contains horses H1, H2, . . . , Hk. The set S
′ = {H2, . . . , Hk} contains only k−1

horses, so they must all be the same color by the inductive hypothesis. Similarly, all the
horses in the set S ′′ = {H1, . . . , Hk−1} must be the same color. Since S is the union of S ′

and S ′′, all the horses in S must have the same color.
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12. Recursive definition

12.1 Induction on recursive definition

For each of the following functions, compute the first few values of the function and then
prove the closed form is correct.

(a) Define a function g : Z+ → Z by

g(1) = 1

g(n) = g(n− 1) + 6n− 6 (for all integers n >= 2)

Closed form: g(n) = 3n2 − 3n + 1

(b) Define a function g : N → N by

g(0) = 0

g(n) = n+ 3g(n− 1) for all integers n ≥ 1

Closed form: g(n) = 3n+1−2n−3
4

(c) Suppose that f : Z+ → Z is defined by

f(1) = 3, f(2) = 5

f(n) = 3f(n− 1)− 2f(n− 2) for all n ≥ 3.

Closed form: f(n) = 2n + 1

(d) Define a sequence of values xn as follows:

x1 = 1, x2 = 7

xn+1 = 7xn − 12xn−1 for n ≥ 2

Closed form: xn = 4n − 3n
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12.2 Unrolling

Find closed forms for the following recursive definitions using unrolling. Specifically, show
at least two steps of unrolling, a summation whose value is equal to T (n), and finally a
closed-form expression (i.e. containing no recursion or summations) equal to T (n).

(a) T : Z+ → Z+ defined by

T (1) = 1

T (n) = 2T (n− 1) + 3

(b) f : N+ → N defined by

f(0) = 0

f(n) = 5f(n− 1) + 1

(c) T : Z+ → Z+ defined (powers of 3 only) by

T (1) = 47

T (n) = 3T (n/3) + 13n
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12.3 Graphs and recursion

Let’s define a new set of graphs Xn as follows:

1. X1 consists of two vertices and no edges.

2. For every k ≥ 2, Xk consists of a copy of Xk−1 plus two additional vertices. There is
an edge from each of the additional vertices to each vertex in the copy of Xk−1.

For example, the following figure shows X1, X2, X3, and X4. A star marks the vertices
in the copy of Xk−1.

⋆

⋆

⋆

⋆

⋆ ⋆

⋆

⋆

⋆ ⋆

⋆

⋆

Suppose that Vk and Ek are the number of vertices and edges in Xk.

(a) Give a table showing the number of vertices and the number of edges in Xk, for k from
1 through 6.

(b) Give a formula for Vk.

(c) Write a recursive definition for Ek.

(d) Find a closed form expression Ek.

(e) The distance between two vertices a and b is the number of edges on the shortest path
from a to b (which is zero if a = b). The diameter of a connected graph is the maximum
distance between any two vertices. For k ≥ 2, what is the diameter of Xk? Briefly
explain why your answer is correct.
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13. Trees

Some useful standard closed forms:
n

∑

k=0

rk =
rn+1 − 1

r − 1
(r 6= 1)

n
∑

k=1

k =
n(n + 1)

2

n
∑

k=1

k2 =
n(n+ 1)(2n+ 1)

6

13.1 Recursion trees

Use recursion trees to find closed forms for the following. Ensure that the input is always
an integer by assuming, as needed, that n has a special form (e.g. a power of 2).

(a) T (1) = 47
T (n) = 3T (n/3) + 13n for n ≥ 2

(b) T (1) = 1
T (n) = 2T (n− 1) + 3 for n ≥ 2

(c) T (1) = 4
T (n) = 2T (n

2
) + n+ 1 for n ≥ 5
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13.2 Grammar Trees

(a) Define a grammar G1 by S → aSbS | SaS | ab | a. where S is the only start symbol
and the terminal symbols are a and b. Prove that a tree generated by G1 has at least as
many nodes labeled a as nodes labeled b.

(b) Define a grammar G2 as follows, in which S is the only start symbol and the terminal
symbols are a and b.

S → bA | aB | SS
A → aS | a
B → bS | b

Prove that, in a tree generated by G2, there are an equal number of a nodes and b nodes.

(c) Define a grammar G3 by S → aS | aSS | a, in which S is the only start symbol and a
is the only terminal symbol. Prove that in any tree generated by G3 there are an equal
number of nodes labeled S as nodes labeled a.

13.3 Non-grammar tree inductions

(a) The Fibonacci trees Tn are a special sort of binary trees defined recursively as follows.

(1) T1 and T2 are binary trees with only a single vertex.

(2) For any n ≥ 3, Tn consists of a root node with Tn−1 as its left subtree and Tn−2 as
its right subtree.

Use induction on the n to prove that the height of Tn is n− 2, for any n ≥ 2.

(b) A parity tree is a full binary tree with each node colored orange or blue, such that:

(1) If v is a leaf node, then v is colored orange.

(2) If v has two children of the same color, then v is colored blue.

(3) If v has two children of different colors, then v is colored orange.

Prove by induction that every parity tree has the parity property: if the root is colored
orange, then it has an odd number of leaves; and if the root is colored blue, then it has
an even number of leaves.
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13.4 Challenge Example

A binomial tree of order k is defined recursively as follows:

(1) A single root node is a binomial tree of order 0.

(2) A binomial tree of order k consists of two binomial trees of order k− 1, with the root of
the first connected as the rightmost child of the root of the second.

The following picture shows the binomial trees of order 1, 2, and 3. The labels on the
nodes show how the larger tree is divided into two lower-order subtrees.

A

B

A

A B

B

A

A A

A

B

B B

B

(a) Use induction on the order of the tree to prove that a binomial tree of order k has 2k

nodes.

(b) Use induction on the order of the tree to prove that a binomial tree of order k has exactly
(

k

i

)

nodes at level i. Hint: For some randomly chosen level i, sum the numbers of nodes
in the two trees.

Warning: in your inductive step you must divide the larger tree into smaller subtrees
by taking it apart at the root. Do not try to graft things onto the bottom of a small tree to
make a big one.
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14. Big-O

14.1 Induction with Inequalities

(a) Prove that n2 > 7n+ 1 for all integers n ≥ 8

(b) Prove that
∑2n

k=n+1
1
k
≥ 7

12
for all integers n ≥ 2

(c) Prove that 1
22

+ 1
32

+ · · ·+ 1
n2 ≤ 3

4
− 1

n
for all integers n ≥ 2

⋆(d) Define a function f : N → N recursively by:

f(0) = 0

f(k) = k + f(⌊k
3
⌋) + f(⌊k

5
⌋) + f(⌊k

7
⌋) for every k > 0

Use (strong) induction to prove that f(k) < 4k for every k > 0.

Hint: Carefully check each use of the inductive hypothesis to make sure it refers to an
integer covered by your base case(s) or your inductive hypothesis. Notice that the claim
is not true for zero, so you can’t apply the inductive hypothesis to zero.

14.2 Big-O Analysis

For the following problems it is enough to propose values for C and k and briefly justify
these by showing that they satisfy the defining inequality for big-o notation.

(a) Show that f(n) = n2 + 8n+ 2 is Θ(n2).

(b) Show that x3+2x
2x+1

is O(x2).

(c) Show that x4−1
x2+1

is O(x2).

(d) Show that 2x + 17 is O(3x).
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15. Algorithm Analysis

15.1 Sorting an Almost Sorted Array

The algorithm below sorts an array of integers which is “almost” sorted in the sense that
every integer starts off at distance at most k from its position in the sorted (in ascending
order) array. To be precise, let the position of an integer in the unsorted array be i and let
the position of the integer in the array after sorting be j. Then if |i − j| ≤ k for all the
values in the input array, the output array will be completely sorted.

The function minimum returns the smaller of its two inputs. You may assume that the
evaluation of minimum(a, b) takes place in constant time. The function swap replaces the
value of ai in the array of integers with the value of aj and vice versa. You may assume that
the evaluation of swap(ai, aj) also requires constant time.

00 AlmostSorted(k,a1, a2, . . . , an: an integer and an array of n integers)
01 for i = 1 to n
02 min=ai;
03 minpos=i;
04 for j = i+ 1 to minimum(i+ k, n)
05 if (aj < min)
06 min=aj
07 minpos=j
08 end for
09 swap(ai, aminpos)
10 end for
11 return a1, a2, . . . , an

Let T (n) denote the running time of AlmostSorted on an input array of length n. Find
a tight big-O bound on T (n). Briefly justify your answer.
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15.2 Mystery Code I

In line 05 the procedure maxthree is calling itself on a version of the input list with the kth
element (ak) removed. Assume it takes constant time to temporarily remove ak from the
list. (Doing this in constant time actually requires some extra details that we are hiding for
clarity.)

00 maxthree(a1, . . . , an) : list of n positive integers, n ≥ 3)
01 if (n = 3) return a1 + a2 + a3
02 else
03 bestval = 0
04 for k = 1 to n
05 newval = maxthree(a1, a2, . . . , ak−1, ak+1, . . . an)
06 if (newval > bestval) bestval = newval
07 end for
08 return bestval

(a) Describe (in English) what maxthree computes.

(b) Suppose that T (n) is the running time of maxthree on an input array of length n. Give
a recursive definition of T (n).

(c) How many leaf nodes are there in the recursion tree for T (n)? Briefly explain.

(d) Does maxthree run in O(2n) time? Briefly explain why or why not.
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15.3 Mystery Code II

The procedure crunch takes an array of integers a1, a2, . . . , an (where n ≥ 1) and returns an
integer. Assume that dividing the array in two (line 05) requires only constant time.

00 crunch(a1, . . . , an : array of integers)
01 if (n = 1 and a1 ≥ 0) return 1
02 else if (n = 1) return 0
03 else
04 m = ⌊n

2
⌋

05 output = crunch(a1, . . . , am) + crunch(am+1, . . . , an)
06 return output

(a) Give a succinct English description of what crunch computes.

(b) Suppose that T (n) is the running time of crunch on an input array of length n. Write
down a recurrence for T (n), including a base case. For simplicity, you may assume that
n is a power of 2.

(c) What is the big-Θ running time of crunch? Justify your answer either by unrolling the
recurrence or by drawing a (well-labeled) recursion tree.
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15.4 Mystery Code III

Consider an array of n distinct real numbers a1, a2, . . . , an. We say that the array has a peak

at position k if the following two conditions hold for every position j between 2 and n:

(1) If j ≤ k, then aj−1 < aj.

(2) If j > k, aj−1 > aj .

Consider the following procedure to determine position of the peak of an array (assume that
the array does indeed have a peak):

00 procedure FindPeak(a1, a2, ..., an: array of real numbers)
01 if (n = 1)
02 return 1
03 if (a1 > a2)
04 return 1
05 else if (an > an−1)
06 return n
07 k = floor((1+n)/2)
08 if (ak−1 > ak)
09 return FindPeak(a1, . . . , ak−1)
10 else if (ak < ak+1)
11 return FindPeak(ak+1, . . . , an) + k
12 else
13 return k

(a) Consider the array −1, 3, 6, 7, 0. Trace the execution of the above pseudocode and show
that it correctly returns the position of the peak.

(b) At line 07, what is the smallest value that n might contain? Why?

(c) Let T (n) be the worst-case running time of the above pseudocode when the array has
size n. Write a recurrence for T (n), including the necessary base case(s). Assume that
splitting the array (lines 09 and 11) takes constant time.

(d) What is the big-Θ running time of FindPeak? Justify your answer by solving the recur-
rence via unrolling or use of a recursion tree.
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15.5 Recursive versus Iterative Algorithms

Here is the code for a mysterious algorithm named Foo.

00 Foo(n: non-negative integer)
01 if n = 0 or n = 1
02 return n
03 else
04 a := 0
05 b := 1
06 for i := 2 to n
07 temp := b
08 b := b+ a
09 a := temp
10 end for
11 return b
12 end if

(a) Give a brief English description of what the function Foo computes.

(b) What is the big-O running time of Foo? Justify your answer.

(c) A simple recursive version of Foo exists, which computes the value of Foo(n) using the
values Foo(n-1) and Foo(n-2). Write the corresponding pseudocode for RecursiveFoo.
Briefly explain how RecursiveFoo works.

(d) Briefly justify why Foo is more efficient than RecursiveFoo.
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16. Proof by Contradiction

(a) Prove that
√
2 +

√
6 <

√
15.

(b) Prove that there are infinitely many integers n of the form n = 4k + 3.

(c) (Slightly harder proof from Rosen.) Prove that there is no rational number r for which
r3 + r + 1 = 0.

Hint: Assume that r = a/b is a root and that a/b is in lowest terms. Multiply the
equation by b3 to clear denominators. Then consider the oddness/evenness of a and b.
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17. Collections of Sets

Recall that, for some set S, the power set of S, P(S), is a set of all possible subsets of S.
The size of P(S) is 2|S|.

17.1 Power Sets 1

Define the following sets:

A = {68, 28}
B = {rain, snow, sun}
C = {water, ice}
D = {{water}, {milk}}
E = {(water, ice)}
F = {ink}

List the elements of each of the following sets or calculate the cardinality (as indicated).

(a) P(B)

(b) P(E)

(c) P(C)−D

(d) P(C) ∩ P(E)

(e) |P(A ∪ B) ∪ P(D ∪ E)|
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17.2 Power Sets 2

Define the following sets:

A = {{Elm}, {Pine}}
B = {Elm,Oak,Maple}
C = {Elm,Vine,Birch,Maple}
D = {Tree,Disease, Street}

List the elements of each of the following sets or calculate the cardinality (as indicated).

(a) {X ∈ P(C) : |X| is even}

(b) A ∩ P(B ∩ C)

(c) |P(C ×D)|

(d) |P(B ∩D)|

17.3 Set-valued Functions

Define f : Z → P(Z) by f(n) = Z− {n}. Compute the following values:

(a) f(37) ∩ f(10)

(b) f(3) ∩ f(4)

(c) f(3)− (f(4) ∩ f(7))
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17.4 Partitions

Recall that a partition P of a (finite) set S is a collection of subsets (denoted S1, . . . , Sn) of
S that satisfies the following three properties:

(1) P covers all of S : S1 ∪ S2 ∪ . . . ∪ Sn = S

(2) P contains no empty sets: Si 6= ∅ for all i ∈ {1, . . . , n}

(3) P contains no overlapping sets: Si ∩ Sj = ∅ whenever i 6= j

Suppose that S = {a, b, c, d, e, f, g}. Determine whether each of the following sets is a
partition of S. Explain why or why not.

(a) {{c, b, f}, {a, g}, {e}, {d}}

(b) {{c, b, f}, {b, d, e}, {a, g}, ∅}

(c) {{c, b, f}, {a, g}, {e}, {d}, {∅}}

(d) {{c, h, f}, {d, e}, {a, g, b}}

(e) {{a, b, c, d, e, f, g}}

(f) {{{a, b, c, d}}, {{e, f, g}}}
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17.5 Counting and Combinations

Solve the following word problems. Providing brief explanations to justify your answers. You
do not need to numerically compute all of the factorials. For instance, 10!

6!
is an acceptable

final answer.

(a) You need to form a battle group of 11 made up of orcs, elves, and goblins. In how many
ways can you choose the composition of your battle group?

(b) How many ways can you construct a string of 20 decimal digits that contains exactly 3
zeros, no two of which are consecutive? (Hint: set up the other 17 digits with spaces
between them and at the ends. Pick three of these spaces to put the zero’s in.)

(c) How many bit strings of length 100 have exactly 10 zeros?

(d) Your latest cheapo cell phone keyboard only includes the uppercase alphabet (26 charac-
ters total). How many 12-character strings can you type that start with ST and contain
no more than three T’s? (Hint: you will need to consider cases of zero T’s, one T, two
T’s, and three T’s)

(e) Suppose a set S has 10 elements, how many subsets of S have an odd number of elements?

(f) After taking a job at Initech you have 7 managers, each of whom sends you one memo per
day. Initech memos come in three types: secret, internal, and public. How many different
combinations of memo types could you receive in one day? (E.g. one combination would
be 1 secret, 5 internal, and 1 public, which is different from the combination 2 secret, 1
internal, and 4 public.)

17.6 A Trinomial Theorem?

(a) What is the coefficient of the x3y14z10-term of (x+ y + z)27?

(b) What is the coefficient of the xaybzc-term of (x+ y + z)27?

(c) What is the coefficient of the xaybzc-term of (x+ y + z)n?

(d) Bonus question to think about for fun: Could you write out the general formula for a
“trinomial theorem”? Do you see different forms in which it might be written? How
many different forms are there total? This makes a good topic for conversation when
you are on a date and there seems to be too much awkward silence.

41



18. State Diagrams

18.1 Recovering a State Diagram From a Transition

Function

Henry has built a state machine for the game Crazy Six. This game has an internal counter
which starts at 0. The two players take turns putting in either the number 2 or the number
3. The machine adds numbers to its counter and declares a winner when the counter reaches
a (non-zero) multiple of 6.

Henry is out sick today and you are asked to complete the state diagram.

1. Draw a picture of the state diagram based on the text file given on the next page.
Organize your picture and draw it clearly, so that it is easy to read. Be sure to mark
the start and final states.

2. One of the sticky notes on Henry’s desk says that the machine does the wrong thing
on certain sequences of inputs. Find and describe the bugs that are causing the wrong
behaviors. Hint: write a meaningful label for each state.

3. Another sticky note suggests that the machine seems to have too many states. Are
there any pairs of states which could be combined into a single state without changing
the behavior of the machine?

4. Revise the state diagram so that it has the right behavior and no unnecessary states.
Change the existing state diagram as little as possible (e.g. keep the same state names).
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Henry’s Game

States: A, B, C, D, E, F, G, H, K

Actions: 2, 3, write-win

Start states: A

Final states: K

Transition function

(A,2): B

(A,3): G

(B,2): F

(B,3): E

(C,2): G

(C,3): H

(D,write-win): K

(E,2): C

(E,3): F

(F,2): D

(F,3): C

(G,2): E

(G,3): A

(H,2): D

(H,3): C
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18.2 A Simple State Diagram

This state diagram represents how a user might retrieve a web page via http.

start 1

2

5 error

done

3 4 finished

fail
request page

request page

request page

not found

ship page

login password ship page

unauthorized

(a) Pick two states and write out the directed walk between them. Remember that the full
version of the walk contains both a sequence of states and a sequence of actions.

(b) Let S denote the set of states and A denote the set of actions in the diagram. Explicitly
list the contents of S and A.

(c) Recall that the transition function δ for a state diagram is a function that takes a
state/action pair as input and returns the set of potential new states. What is the value
of δ on the following inputs: (1, request page), (3, password), and (start, request page)?

(d) How large is S ×A? For how many of these values does δ return a value other than the
empty set?

(e) In practice, this state diagram may be more complicated than it needs to be. Can you
think of ways to modify the diagram to make it smaller? (For instance, we might decide
that we can combine “done” and “finished” into a single state.) Note that modifications
to the diagram may alter the transition function, however, you should avoid modifications
which change the set of possible sequences of actions.
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19. Countability

An infinite set A is called countably infinite if there exists a bijection f : N → A.

A set is called countable if it is either finite or countably infinite.

A set that is not countable is called uncountably infinite or just uncountable.

19.1 Which Kind of Infinity?

State whether each of the following sets is countably infinite or uncountable.

(a) N

(b) P(N)

(c) C (the complex numbers)

(d) X = {S : S ⊂ N, S is finite}

(e) The number of books written in Unicode that could ever be written

(f) Real numbers r such that r’s decimal expansion eventually ends with the decimal se-
quence 141592653
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19.2 A Curious Bijection

Recall that two sets have the same size (cardinality) if there is a bijection between them.
You might imagine that N2 has more elements than N. However, in this problem we will
investigate a function f : N2 → N that turns out to be a bijection and, therefore, shows
these two sets are, in fact, the same size.

Before defining f , let us agree to denote by s(n) the sum of the first n natural numbers.
In other words, s is the following function:

s : N → N by s(n) =

n
∑

i=0

i

Now we define f in terms of s as follows:

f : N2 → N by f(x, y) = s(x+ y) + x

The following questions will explore some properties of this seemingly complicated func-
tion:

(a) Draw a picture of what the function does for pairs (x, y) such that x+y ≤ 4. Specifically,
draw the usual xy-coordinate plane, and, at the (x, y)-position, write the output value
f(x, y). For example, the location (1, 2), should contain the value 7.

(b) For some fixed natural number k, consider all pairs (x, y) with x+ y = k. What range
of output values does f produce for this set of input pairs?

(c) What is the preimage of the output value 17?

(d) Suppose that we have two pairs (x, y) and (p, q) which are not the same and for which
x+ y 6= p+ q. Explain why f(x, y) 6= f(p, q).

(e) Suppose that we have pairs (x, y) and (p, q) which are not the same but for which
x+ y = p+ q. Explain why f(x, y) 6= f(p, q).

The answers to (d) and (e) could easily be combined into a formal proof that f is one-
to-one. Similarly, the pattern observed in (a), (b), and (c) leads to a proof that f is onto.
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20. Planar Graphs

A graph G is a subdivision of another graph H if G can be obtained from H by adding new
nodes of degree 2 on one or more of the edges of H .

Kuratowski’s theorem: A graph is planar iff it does not have a subgraph that is a
subdivision of K5 or K3,3.

20.1 Faces

a

b

c d

e

f

g

h

m

For the graph G above, answer the following questions:

(a) How many faces does G have?

(b) What is the degree of each face of G?

(c) Verify the handshaking theorem for faces (the sum of the face degrees is twice the number
of edges) for G.

(d) Verify that Euler’s formula (f − e+ v = 2) holds for this graph.
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20.2 Euler’s Formula

Euler’s formula states that f − e + v = 2 for a connected planar graph. Generalize this
formula to the case where the graph might have more than one connected component. Start
by drawing a graph with more than one connected component, and figure out the formula
then.

Prove your result by induction on the number of connected components. Hints: the
normal version of Euler’s formula is the base case. What is a small modification to a graph
that would reduce the number of connected components by one?

20.3 Planar graphs

Here are two graphs X3 (left) and X4 (right).

(a) Show that X3 is planar by redrawing it so that pairs of edges never cross.

(b) A graph cannot be planar if it contains K3,3 or K5 as a subgraph. Show that X4 is not
planar by showing that it has a subgraph that is isomorphic to one of these two special
graphs. The most effective way to do this is probably a combination of a labelled picture
(start with what you did for part a) combined with some explanation.

(c) Suppose that G is an undirected connected simple planar graph with 8 vertices, 2 of
which have degree 4 and 6 of which have degree 3. How many edges does it have? How
many faces does it have? (Hint: use Euler’s formula.)
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